Fatty acid synthase (FASN) is an attractive therapeutic target in non-alcoholic steatohepatitis (NASH) because it drives de novo lipogenesis and mediates pro-inflammatory and fibrogenic signaling. We therefore tested pharmacological inhibition of FASN in human cell culture and in three diet induced mouse models of NASH. Three related FASN inhibitors were used; TVB-3664, TVB-3166 and clinical stage TVB-2640 (denifanstat). In human primary liver microtissues, FASN inhibiton (FASNi) decreased triglyceride (TG) content, consistent with direct anti-steatotic activity. In human hepatic stellate cells, FASNi reduced markers of fibrosis including collagen1α (COL1α1) and α-smooth muscle actin (αSMA). In CD4+ T cells exposed to NASH-related cytokines, FASNi decreased production of Th17 cells, and reduced IL-1β release in LPS-stimulated PBMCs. In mice with diet induced NASH l, FASNi prevented development of hepatic steatosis and fibrosis, and reduced circulating IL-1β. In mice with established diet-induced NASH, FASNi reduced NAFLD activity score, fibrosis score, ALT and TG levels. In the CCl4-induced FAT-NASH mouse model, FASN inhibition decreased hepatic fibrosis and fibrosis markers, and development of hepatocellular carcinoma (HCC) tumors by 85%. These results demonstrate that FASN inhibition attenuates inflammatory and fibrotic drivers of NASH by direct inhibition of immune and stellate cells, beyond decreasing fat accumulation in hepatocytes. FASN inhibition therefore provides an opportunity to target three key hallmarks of NASH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485253PMC
http://dx.doi.org/10.1038/s41598-022-19459-zDOI Listing

Publication Analysis

Top Keywords

fasn inhibition
16
fasn
8
drivers nash
8
diet induced
8
fasni decreased
8
stellate cells
8
fasni reduced
8
nash fasni
8
nash
7
fibrosis
6

Similar Publications

Bee pollen, a rich nutritional food, was employed to develop a raw material for skin whitening. The polyphenol profile and antioxidant, antityrosinase, and anti-melanogenesis activities of the ethanol extracts of five species of bee pollens (EEBPs) were determined. The results showed that there were a total of 121 phenolic compounds in these EEBPs.

View Article and Find Full Text PDF

Consuming food containing ingredients with a documented impact on lipid metabolism can help fight overweight and obesity. The simplest way to reduce the level of fatty acids is to block their synthesis or increase the rate of their degradation. This study aimed to determine the effect of resveratrol, , conjugated linoleic acid (CLA), , CLA, and various variants of their combinations on de novo fatty acid biosynthesis in 3T3-L1 adipocytes.

View Article and Find Full Text PDF

Background: Cachexia is defined by chronic loss of fat and muscle, is a frequent complication of pancreatic ductal adenocarcinoma (PDAC), and negatively impacts patient outcomes. Nutritional supplementation cannot fully reverse tissue wasting, and the mechanisms underlying this phenotype are unclear. This work aims to define the relative contributions of catabolism and anabolism to adipose wasting in PDAC-bearing mice.

View Article and Find Full Text PDF

Fluorinated liquid crystal monomers (FLCMs) are widely employed in liquid crystal display (LCD) panels. As emerging environmental contaminants with persistent, bioaccumulative, and toxic properties, FLCMs were proven to accumulate in liver, raising great concern regarding potential hepatotoxicity. 1-Ethoxy-2,3-difluoro-4-(trans-4-propylcyclohexyl) benzene (EDPrB), as one representative FLCM, was chosen to investigate the hepatotoxicity in adult zebrafish (Danio rerio) at environmentally relevant concentrations (1, 10, and 100 μg/L) with long-term exposure (21 days).

View Article and Find Full Text PDF

One of the hallmarks of cancer is metabolic reprogramming which controls cellular homeostasis and therapy resistance. Here, we investigated the effect of momordicine-I (M-I), a key bioactive compound from Momordica charantia (bitter melon), on metabolic pathways in human head and neck cancer (HNC) cells and a mouse HNC tumorigenicity model. We found that M-I treatment on HNC cells significantly reduced the expression of key glycolytic molecules, SLC2A1 (GLUT-1), HK1, PFKP, PDK3, PKM, and LDHA at the mRNA and protein levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!