Carbon and phosphorous are two primary elements common to the bio-geosphere and are omnipresent in both biotic and abiotic arenas. Phosphonate and carboxylate are considered as building blocks of glyphosate and humic substances and constituents of the cellular wall of bacteria and are the driving functionalities for most of the chemical interactions involving these two elements. Phosphonocarboxylates, a combination of both the functionalities in one moiety, are ideal models to dig deep into for understanding the chemical interactions of the two functional groups with metal ions. Phosphorous and carbon majorly exist as inorganic/organic phosphate and carboxylate, respectively, in the bio-geosphere. Aquatic contamination is a major concern for uranium, and the presence of complexing agents would alter the uranium concentrations in aquifers. Determination of solution thermodynamic parameters, speciation plots, redox patterns, -pH diagrams, coordination structures, and molecular-level understanding by density functional theory calculations was carried out to interpret the uranyl (UO) interaction with three environmentally relevant phosphonocarboxylates, namely, phosphono-formic acid (PFA), phosphono-acetic acid (PAA), and phosphono-propanoic acid (PPA). UO forms 1:1 complexes with the three phosphonocarboxylates in the monoprotonated form, having nearly the same stability, and the complexes [UO(PFAH)], [UO(PAAH)], and [UO(PPAH)] involve chelate formation of five, six, and seven membered rings, respectively, through the participation of an oxygen each from the carboxylate and phosphonate, strengthened by an intra-molecular hydrogen bonding through the proton of the phosphonate moiety with uranyl oxygen. The complex formations are favored both enthalpically and entropically, with the latter being more contributive to the overall free energy of formation. The redox speciation showed an aqueous soluble complex formation over a wide pH range of 1-8. Electrospray ionization mass spectrometry and extended X-ray absorption fine structure established the coordination modes, which are further corroborated by density functional calculations. The knowledge gained from the present studies provide potential inputs in framing the cleanup, sequestering, microbial, and bio-remediation strategies for uranyl from aquatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.2c01991 | DOI Listing |
Nat Geosci
December 2024
Department of Earth Sciences, University of Geneva, Geneva, Switzerland.
The sulfur species present in magmatic fluids affect the global redox cycle, the Earth's climate and the formation of some of the largest and most economic ore deposits of critical metals. However, the speciation of sulfur under conditions that are relevant for upper crustal magma reservoirs is unclear. Here we combine a prototype pressure vessel apparatus and Raman spectroscopy to determine sulfur speciation in arc magmatic fluid analogues in situ over a range of geologically relevant pressure-temperature-redox conditions.
View Article and Find Full Text PDFChem Rev
January 2025
Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
Vanadium is a transition metal with important industrial, technological, biological, and biomedical applications widespread in the environment and in living beings. The different reactions that vanadium compounds (VCs) undergo in the presence of proteins, nucleic acids, lipids and metabolites under mild physiological conditions are reviewed. In the environment vanadium is present naturally or through anthropogenic sources, the latter having an environmental impact caused by the dispersion of VCs in the atmosphere and aquifers.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550082, P. R. China.
Rice leaves can assimilate atmospheric mercury (Hg), which is accumulated by grains and causes health risks to rice consumers. However, the molecular mechanisms underlying Hg assimilation in rice leaves remain poorly understood. Here, we investigated catalase's (CAT) function in Hg oxidation within rice leaves, as well as the Hg speciation and transcriptomic profiles of rice leaves exposed to Hg.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFChemMedChem
December 2024
Department of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, Puerto Rico, 00925-2537, United States.
Tinoco A-Team Deferasirox (Def), an orally administered iron-chelating drug, has drawn significant interest in repurposing for anticancer application due to the elevated Fe demand by cancer cells. But there are also concerns about its severe off target health effects. Herein Cu(II) binding is studied as a potential off target interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!