Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionac8mlj4vr6bhuc70tcabjulief1dvgk3): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Epilepsy is a neurological disorder caused by abnormally elevated neuronal firing and excitability. Spire2, also known as the nucleating factor of F-actin, plays an important role in long-range vesicle transport. This study showed that Spire2 was highly expressed in neurons in the cortex and hippocampus. Its knockdown significantly reduced the initiation current of the evoked action potential and the frequency of action potential, suggesting that Spire2 knockdown inhibits the threshold current of the neuron. In the cortex of patients with refractory temporal lobe epilepsy (TLE), Spire2 expression was significantly reduced. Decreased expression levels of Spire2 were also observed in kainic acid (KA) and pentylenetetrazole (PTZ) animal models. In the KA and PTZ models, Spire2-knockdown mice showed significantly increased seizures and shortened intervals between seizures, with a tendency to increase seizure duration. In contrast, Spire2-overexpressing mice showed reduced numbers of spontaneous seizures. In conclusion, this study revealed a significantly decreased expression of Spire2 in the brain tissues of epileptic individuals and an inhibitory role for this protein in the development of epilepsy. In addition, knockdown of Spire2 aggravated abnormal firing in epileptic mice, while its overexpression had the opposite effect. These findings provide new insights into the mechanism of epileptogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2022.09.008 | DOI Listing |
Biochem Biophys Res Commun
April 2024
School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China. Electronic address:
Cellular vesicle long-distance transport along the cytoplasmic actin network has recently been uncovered in several cell systems. In metaphase mouse oocytes, the motor protein myosin-5b (Myo5b) and the actin nucleation factor Spire are recruited to the Rab11a-positive vesicle membrane, forming a ternary complex of Myo5b/Spire/Rab11a that drives the vesicle long-distance transport to the oocyte cortex. However, the mechanism underlying the intermolecular regulation of the Myo5b/Spire/Rab11a complex remains unknown.
View Article and Find Full Text PDFNeuroscience
November 2022
Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China; Department of Neurology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:
Epilepsy is a neurological disorder caused by abnormally elevated neuronal firing and excitability. Spire2, also known as the nucleating factor of F-actin, plays an important role in long-range vesicle transport. This study showed that Spire2 was highly expressed in neurons in the cortex and hippocampus.
View Article and Find Full Text PDFPhysiol Rep
January 2021
Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
The fusion of villous cytotrophoblasts into the multinucleated syncytiotrophoblast is critical for the essential functions of the mammalian placenta. Using RNA-Seq gene expression, quantitative protein expression, and siRNA knockdown we identified genes and their cognate proteins which are similarly upregulated in two cellular models of mammalian syncytia development (human BeWo cytotrophoblast to syncytiotrophoblast and murine C2C12 myoblast to myotube). These include DYSF, PDE4DIP, SPIRE2, NDRG1, PLEC, GPR146, HSPB8, DHCR7, and HDAC5.
View Article and Find Full Text PDFWorld Neurosurg
April 2020
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neuro-Oncology, China National Clinical Research Center for Neurological Diseases, Beijing, China; Department of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China; Department of Cancer Biology, Beijing Key Laboratory of Brain Tumor, Beijing, China. Electronic address:
Objective: Meningiomas are among the most common primary intracranial tumors. Up to 20% of cases will show increased malignancy at histological examination (World Health Organization grade II or III). Effective pharmacotherapy, except for radiotherapy, is lacking.
View Article and Find Full Text PDFChin Med Sci J
September 2019
State Key Laboratory of Medical Molecular Biology & Key Laboratory of RNA and Hematopoietic Regulation & Department of Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.
Objective To explore circulating biomarkers for screening the invasiveness of non-functioning pituitary adenomas (NF-PAs). Methods The exosomal RNAs were extracted from serum of patients with invasive NF-PA (INF-PA) or noninvasive NF-PA (NNF-PA). Droplet digital PCR was adapted to detect the mRNA expression of candidate genes related to tumor progression or invasion, such as cyclin dependent kinase 6 (CDK6), ras homolog family member U (RHOU), and spire type actin nucleation factor 2 (SPIRE2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!