Large-scale brain networks undergo functional reorganization over the course of the lifespan, with concurrent implications for cognition. Characterizing network connectivity during a task may provide complementary insight into cognitive development and aging, to that provided by resting-state. We assessed network background connectivity, which refers to connectivity that remains after task effects have been regressed out, during a visual memory-encoding task in a lifespan sample. More specifically we assessed the within- and between-network background connectivity of the default mode, salience, and frontoparietal networks. Within-network background connectivity of salience and frontoparietal networks differed between age groups, with late-life adults showing lower connectivity. We did not find an effect of age group in default mode network background connectivity, contrary to previous findings using resting-state. However, default mode between-network background connectivity with salience and frontoparietal networks was greater in mid-life and late-life adults than in younger age groups. Overall, our findings in a lifespan sample are in line with previous observations of age-related network de-differentiation. However, the lack of age effect in default mode network background connectivity suggests that background connectivity indeed represents a complementary measure to resting-state connectivity, providing a differential glance of network connectivity during a particular state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10088545 | PMC |
http://dx.doi.org/10.1016/j.neures.2022.09.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!