Saxitoxin (STX) is a highly toxic marine neurotoxin produced by phytoplankton and a growing threat to ecosystems worldwide due to the spread of toxic algae. Although STX is an established sodium channel blocker, the overall profile of transcriptional levels in STX-exposed organisms has yet to be described. Here, we describe a toxicity assay and transcriptome analysis of the copepod Tigriopus japonicus exposed to STX. The half-maximal lethal concentration of STX was 12.35 μM, and a rapid mortality slope was evident at concentrations between 12 and 13 μM. STX induced changes in swimming behavior among the copepods after 10 min of exposure. In transcriptome analysis, gene ontology revealed that the genes involved in nervous system and gene expression were highly enriched. In addition, the congenital neurological disorder and nuclear factor erythroid 2-related factor 2-mediated oxidative stress pathways were identified to be the most significant in network analysis and toxicity pathway analysis, respectively. This study provides valuable information about the effects of STX and related transcriptional responses in T. japonicus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136464 | DOI Listing |
J Xenobiot
December 2024
National Research Council, Water Research Institute (IRSA-CNR), Via Roma, 3, 74123 Taranto, Italy.
The present study focused, for the first time, on the adverse effects of nine REEs on the marine copepod For this purpose, copepod mortality, immobilization, and naupliar development were assessed. Overall, the results demonstrated that all REEs tested exerted significant adverse effects on , with LC50 values ranging from 0.56 to 1.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China. Electronic address:
Sci Total Environ
December 2024
Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea; Korea National University of Science & Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:
Mar Pollut Bull
December 2024
Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea. Electronic address:
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate post-transcription and influence various biological processes across species. Despite various studies of miRNAs in vertebrates, plants, and other organisms, miRNA data in aquatic invertebrates are insufficient. In this study, we identified miRNAs from four aquatic invertebrate species that are widely used in aquatic toxicology: the rotifer Brachionus koreanus, the water flea Daphnia magna, the cyclopoid copepod Paracyclopina nana, and the harpacticoid copepod Tigriopus japonicus, using next-generation sequencing and in silico analysis.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea. Electronic address:
Although the measurement of short-chain chlorinated paraffins (SCCPs) in aquatic ecosystems has increased, limited information is available on their toxic effects on aquatic animals. To evaluate the harmful effects of SCCPs, we assessed their acute impact on 24-h survival and biochemical parameters, as well as their chronic effects on growth and reproduction over three generations in the harpacticoid copepod Tigriopus japonicus. Dose-dependent increases in mortality were observed, with an LC50 value of 74.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!