Due to the complexity and particularity of cancer cell microenvironments, redox responsive drug delivery systems (DDSs) for cancer therapy have been extensively explored. Compared with widely reported cancer treatment systems based on disulfide bonds, diselenide bonds have better redox properties and greater anticancer efficiency. In this review, the significance and application of diselenide bonds in DDSs are summarized, and the stimulation sensitivity of diselenide bonds is comprehensively reported. The potential and prospects for the application of diselenide bonds in next-generation anticancer drug treatment systems are extensively discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.113707DOI Listing

Publication Analysis

Top Keywords

diselenide bonds
20
drug delivery
8
delivery systems
8
cancer therapy
8
treatment systems
8
application diselenide
8
bonds
6
diselenide
5
insights stimuli-responsive
4
stimuli-responsive diselenide
4

Similar Publications

Orthogonal upconversion nanocarriers for combined photodynamic therapy and precisely triggered gene silencing in combating keloids.

J Control Release

January 2025

Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:

Keloids are pathological scars characterized by excessive fibroblast proliferation, abnormal collagen deposition, and chronic inflammation, which often result in high recurrence rates and limited treatment success. Targeting BACH1 with gene therapy has shown promise in regulating fibroblast activity and reducing inflammation. However, effective delivery systems for targeted gene therapy in keloids remain a major challenge.

View Article and Find Full Text PDF

Effective glycemic control is paramount for optimal wound healing in diabetic patients. Traditional antibacterial and anti-inflammatory treatments, while important, often fall short in addressing the hyperglycemic conditions of diabetic wounds. Therefore, the development of novel therapeutic strategies for accelerating diabetic wound healing has garnered escalating attention.

View Article and Find Full Text PDF

Dynamic Diselenide Hydrogels for Controlled Tumor Organoid Culture and Dendritic Cell Vaccination.

ACS Appl Mater Interfaces

December 2024

Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, China.

Dynamic hydrogels are emerging as advanced materials for engineering tissue-like environments that mimic cellular microenvironments. We introduce a diselenide-cross-linked hydrogel system with light-responsive properties, designed for precise control of tumor organoid growth and light-initiated radical inactivation, particularly for dendritic cell (DC) vaccines. Diselenide exchange enables stress relaxation and hydrogel remodeling, while recombination and quenching of seleno radicals (Se) reduce cross-linking density, leading to controlled degradation.

View Article and Find Full Text PDF

Visible-light-programmed patterning in dynamically bonded cholesteric liquid crystal elastomer.

Nat Commun

November 2024

School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, PR China.

Optical properties of cholesteric liquid crystal elastomers (CLCEs) can be tuned by an external field, however, it will spontaneously restore to the original state after the field is removed. Here, we introduce diselenide dynamic covalent bonds (DCBs) into CLCEs, whose optical properties can be reversibly and precisely tuned under the combined action of force and light. The tuned optical properties will be written into and remembered by the CLCEs, thus a programming effect is achieved.

View Article and Find Full Text PDF

Photo-induced carboxylation of C(sp)-S bonds in aryl thiols and derivatives with CO.

Nat Commun

November 2024

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, P. R. China.

Aryl thiols have proven to be a useful class of electron donors and hydrogen atom sources in photochemical processes. However, the direct activation and functionalization of C(sp)-S bonds in aryl thiols remains elusive in the field of photochemistry. Herein, a photochemical carboxylation of C(sp)-S bonds in aryl thiols with CO is reported, providing a synthetic route to important aryl carboxylic acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!