Double-sided plasmonic metasurface for simultaneous biomolecular separation and SERS detection.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Materials Science and Engineering, City University of Hong Kong, 83, Tat Chee Avenue, Kowloon, Hong Kong, China. Electronic address:

Published: January 2023

Porous membrane-based nanofiltration separation of small biomolecules is a widely used biotechnology for which size-based selectivity is a critical parameter of technological relevance. Efficient determination of size selectivity calls for an advanced detection method capable of performing sensitive, rapid, and on-membrane examination. Surface-enhanced Raman spectroscopy (SERS) is such a detection method that has been widely recognized as an ultrasensitive technique for trace-level detection with sensitivity down to the single-molecule level. In this work, we for the first time develop a double-sided hierarchical porous membrane-like plasmonic metasurface to realize high-selectivity bimolecular separation and simultaneous ultrasensitive SERS detection. This highly flexible device, consisting of subwavelength nanocone pairs surrounded by randomly orientated sub-5 nm nanogrooves, was prepared by combining customized "top-down" fabrication of conical nanopores in an ion-track registered polycarbonate membrane and self-assembly of nanogrooves on the membrane surface through physical vapor deposition. The unique tip-to-tip oriented conical nanopores in the device enables excellent size-based molecular selectivity; the hierarchical groove-pore structure supports a peculiar cascaded electromagnetic near-field enhancement mechanism, endowing the device with SERS-based molecular detection of ultrahigh sensitivity, uniformity, repeatability, and polarization independence. With such dual structural merits and performance enhancement, we demonstrate effective nanofiltration separation of small-sized adenine from big-sized ss-DNA and synergistic SERS determination of their species. We experimentally demonstrate an ultrasensitive detection of 4-mercaptopyridine down to 10 pM. Together with its unparalleled mechanical flexibility, this double-side-responsive plasmonic metasurface membrane can find great potential in real-world molecular filtration and detection under extremely complex working conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121801DOI Listing

Publication Analysis

Top Keywords

plasmonic metasurface
12
sers detection
12
detection
8
nanofiltration separation
8
detection method
8
conical nanopores
8
double-sided plasmonic
4
metasurface simultaneous
4
simultaneous biomolecular
4
separation
4

Similar Publications

Thermostable terahertz metasurface enabled by graphene assembly film for plasmon-induced transparency.

Sci Rep

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.

With the increasing demand on high-density integration and better performance of micro-nano optoelectronic devices, the operation temperatures are expected to significantly increase under some extreme conditions, posing a risk of degradation to metal-based micro-/nano-structured metasurfaces due to their low tolerance to high temperature. Therefore, it is urgent to find new materials with high-conductivity and excellent high-temperature resistance to replace traditional micro-nano metal structures. Herein, we have proposed and fabricated a thermally stable graphene assembly film (GAF), which is calcined at ultra-high temperature (~ 3000 ℃) during the reduction of graphite oxide (GO).

View Article and Find Full Text PDF

A transmission-type 2-bit coding polarization conversion metasurface with radiation function is proposed in this paper. Polarization conversion is realized by two layers of grating structure and polarization conversion structure layer. Compared with conventional polarization conversion metasurface which is composed of two orthogonal grating layers and polarization conversion arrows, the two grating layers of the proposed design are parallel.

View Article and Find Full Text PDF

Metasurface Plasmon Resonance Biosensor Enhanced with Dual Gold Nanoparticles for the Ultrasensitive Quantitative Detection of C-Reactive Protein.

Nano Lett

January 2025

College of Life Science and Technology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430074, China.

The pursuit of cutting-edge diagnostic systems capable of detecting biomarkers with exceptional sensitivity and precision is crucial for the timely and accurate monitoring of inflammatory responses. In this study, we introduce a dual gold nanoparticle-enhanced metasurface plasmon resonance (Bi-MSPR) biosensor for the ultrasensitive detection of C-reactive protein (CRP). The Bi-MSPR sensor is constructed upon a nanocup array chip with gradient-free electron density, where an innovative metasurface structure is built using a PEI-immobilized dual-gold nanoparticle amplification system.

View Article and Find Full Text PDF

Photonics bound states in the continuum (BICs) are peculiar localized states in the continuum of free-space waves, unaffected by far-field radiation loss. Although plasmonic nano-antennas squeeze the optical field to nanoscale volumes, engineering the emergence of quasi-BICs with plasmonic hotspots remains challenging. Here, the origin of symmetry-protected (SP) quasi-BICs in a 2D system of silver-filled dimers, quasi-embedded in a high-index dielectric waveguide, is investigated through the strong coupling between photonic and plasmonic modes.

View Article and Find Full Text PDF

Metasurface-Coated Liquid Microlens for Super Resolution Imaging.

Micromachines (Basel)

December 2024

State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an 710054, China.

Inspired by metasurfaces' control over light fields, this study created a liquid microlens coated with a layer of Au@TiO, Core-Shell nanospheres. Utilizing the surface plasmon resonance (SPR) effect of Au@TiO, Core-Shell nanospheres, and the formation of photonic nanojets (PNJs), this study aimed to extend the imaging system's cutoff frequency, improve microlens focusing, enhance the capture capability of evanescent waves, and utilize nanospheres to improve the conversion of evanescent waves into propagating waves, thus boosting the liquid microlens's super-resolution capabilities. The finite difference time domain (FDTD) method analyzed the impact of parameters including nanosphere size, microlens sample contact width, and droplet's initial contact angle on super-resolution imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!