Siderophores produced via nonribosomal peptide synthetase (NRPS) pathways serve as critical virulence factors for many pathogenic bacteria. Improved knowledge of siderophore biosynthesis guides the development of inhibitors, vaccines, and other therapeutic strategies. Fimsbactin A is a mixed ligand siderophore derived from human pathogenic that contains phenolate-oxazoline, catechol, and hydroxamate metal chelating groups branching from a central l-Ser tetrahedral unit via amide and ester linkages. Fimsbactin A is derived from two molecules of l-Ser, two molecules of 2,3-dihydroxybenzoic acid (DHB), and one molecule of l-Orn and is a product of the biosynthetic operon. Here, we report the complete reconstitution of fimsbactin A biosynthesis in a cell-free system using purified enzymes. We demonstrate the conversion of l-Orn to -acetyl--hydroxy-putrescine (ahPutr) via ordered action of FbsJ (decarboxylase), FbsI (flavin -monooxygenase), and FbsK (-acetyltransferase). We achieve conversion of l-Ser, DHB, and l-Orn to fimsbactin A using FbsIJK in combination with the NRPS modules FbsEFGH. We also demonstrate chemoenzymatic conversion of synthetic ahPutr to fimsbactin A using FbsEFGH and establish the substrate selectivity for the NRPS adenylation domains in FbsH (DHB) and FbsF (l-Ser). We assign a role for the type II thioesterase FbsM in producing the shunt metabolite 2-(2,3-dihydroxyphenyl)-4,5-dihydrooxazole-4-carboxylic acid (DHB-oxa) via cleavage of the corresponding thioester intermediate that is tethered to NRPS peptidyl carrier domains during biosynthetic assembly. We propose a mechanism for branching NRPS-derived peptides via amide and ester linkages via the dynamic equilibration of -DHB-Ser and -DHB-Ser thioester intermediates via hydrolysis of DHB-oxa thioester intermediates. We also propose a genetic signature for NRPS "branching" in the presence of a terminating C-T-C motif (FbsG).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.2c00573 | DOI Listing |
Biochemistry
January 2025
Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States.
Branch-point syntheses in nonribosomal peptide assembly are rare but useful strategies to generate tripodal peptides with advantageous hexadentate iron-chelating capabilities, as seen in siderophores. However, the chemical logic underlying the peptide branching by nonribosomal peptide synthetase (NRPS) often remains complex and elusive. Here, we review the common strategies for the biosynthesis of branched nonribosomal peptides (NRPs) and present our biochemical investigation on the NRPS-catalyzed assembly of fimsbactin A, a branched mixed-ligand siderophore produced by the human pathogenic strain .
View Article and Find Full Text PDFACS Chem Biol
December 2024
Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States.
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain.
View Article and Find Full Text PDFbioRxiv
July 2024
Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, United States.
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain.
View Article and Find Full Text PDFACS Chem Biol
October 2022
Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States.
Siderophores produced via nonribosomal peptide synthetase (NRPS) pathways serve as critical virulence factors for many pathogenic bacteria. Improved knowledge of siderophore biosynthesis guides the development of inhibitors, vaccines, and other therapeutic strategies. Fimsbactin A is a mixed ligand siderophore derived from human pathogenic that contains phenolate-oxazoline, catechol, and hydroxamate metal chelating groups branching from a central l-Ser tetrahedral unit via amide and ester linkages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!