Monolithic Silica Microbands Enable Thin-Layer Chromatography Analysis of Single Cells.

Anal Chem

Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States.

Published: October 2022

A picoliter thin-layer chromatography (pTLC) platform was developed for analyzing extremely miniature specimens, such as assay of the contents of a single cell of 1 picoliter volume. The pTLC chip consisted of an array of microscale bands made from highly porous monolithic silica designed to accept picoliter-scale volume samples. pTLC bands were fabricated by combining sol-gel chemistry and microfabrication technology. The width (60-80 μm) and depth (13 μm) of each band is comparable to the size of single cells and acted to reduce the lateral diffusion and confine the movement of compounds along the microbands. Ultrasmall volumes (tens of pL) of model fluorescent compounds were spotted onto the microband by a piezoelectric microdispenser and successfully separated by pTLC. The separation resolution and analyte migration were dependent on the macropore size (ranging from 0.3 to 2.3 μm), which was adjustable by changing the porogen concentration during the sol-gel process. For a 0.3 μm macropore size, attomoles of analyte were detectable by fluorescence using standard microscopy methods. The separation resolution, theoretical plate number, and separation times ranged from 1.3 to 2.1, 4 to 357, and 2 to 8 min, respectively, for the chosen model biological lipids. To demonstrate the capability of pTLC for separating analytes from single mammalian cells, cells loaded with fluorescent lipophilic dyes or sphingosine kinase reporter were spotted on microbands, and the single-cell contents separated by pTLC were detected from their fluorescence. These results demonstrate the potential of pTLC for applications in many areas where miniature specimens and high-throughput parallel analyses are needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9789895PMC
http://dx.doi.org/10.1021/acs.analchem.2c02622DOI Listing

Publication Analysis

Top Keywords

monolithic silica
8
thin-layer chromatography
8
single cells
8
miniature specimens
8
separated ptlc
8
separation resolution
8
macropore size
8
ptlc
7
silica microbands
4
microbands enable
4

Similar Publications

Background: Although surface finishing processes are effective against Streptococcus mutans biofilm, the mechanism of action of saliva with different acidity values ​​has not been studied in detail. This study aims to produce four different all-ceramic materials in a single session with CAD/CAM devices and apply two different surface finishing processes, glazing and polishing, and then determine the retention of Streptococcus mutants on the surfaces of the materials in saliva with varying levels of acidity.

Methods: Zirconia-reinforced lithium silicate (Vita Suprinity, Vita Zahnfabrik, Bad Saöckingen, Germany), monochromatic feldspar (Vitablocs Mark 2, Vita Zahnfabrik, Bad Saöckingen, Germany), leucite glass ceramic (IPS Empress CAD, Ivoclar Vivadent, Liechtenstein), and monolithic zirconia (Incoris TZI (Cerec) Sirona, Germany) were used in the study.

View Article and Find Full Text PDF

Precise Light-Driven Polarity of Stationary Phase for Regulating Gradient Separation of Liquid Chromatography.

Anal Chem

December 2024

Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji City 133002, Jilin Province, China.

Generally, the traditional stationary phase for liquid chromatography is the key part, but with an in situ immutable property, leading to many separation limitations. Based on the former exploration of photosensitive gas chromatography, we successfully prepared a photosensitive monolithic capillary silica column with high light transmission, taking advantage of the reversible cis-trans isomerism of azobenzene. And the cis-trans isomerism has launched an effective, reversible, and precise control on the liquid chromatographic retention behavior just by photoinduction according to the theoretical basis of a good correlation between photoinduction time, -azobenzene ratio, and chromatographic retention factor () ( > 0.

View Article and Find Full Text PDF

Silica-based monoliths offer higher separation efficiency per unit pressure drop compared to particle-packed columns. Their application is limited by the commercial availability of different column chemistries. Pentafluorophenyl ligands enable hydrogen bonding, dipole-dipole, π-π, and hydrophobic interactions, facilitating the separation of various compounds.

View Article and Find Full Text PDF

Quantification of gimeracil, tegafur, and 5-FU in human plasma via LC-MS/MS with a simplified pretreatment using flow-through extraction.

J Chromatogr B Analyt Technol Biomed Life Sci

December 2024

Laboratory of Clinical Pharmacy and Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan. Electronic address:

Gimeracil, a component in S-1 (an oral anticancer agent comprising tegafur, a prodrug of 5-fluorouracil (5-FU), potassium oxonate, and gimeracil), inhibits metabolic enzymes, thereby impeding 5-FU degradation. Therefore, the blood level of gimeracil is closely associated with the disposition of 5-FU, and quantification of gimeracil can provide important information if a case shows an inappropriate 5-FU blood concentration. Nevertheless, methods for quantifying gimeracil in human plasma are rarely reported.

View Article and Find Full Text PDF

Current strategies for constructing sparse nanostructures for fabricating superblacks are only suitable for a few light-absorbing materials, severely limiting their applications. Herein, ultra-low reflective silica aerogels with ultra-high light transparency are used as solid smokes to individually or simultaneously suspend at least 100 species of light-absorbing nanoparticles with a volume fraction as low as 0.005%, for creating > 100 superblacks in practice and one billion superblacks in theory if taken permutation and combination among these 0D, 1D, or 2D nanoparticles into account.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!