Background: Working memory (WM) training (WMT) is a popular intervention approach against cognitive decline in patients with Parkinson's disease (PD). However, heterogeneity in WM responsiveness suggests that WMT may not be equally efficient for all patients.
Objective: The present study aims to evaluate a multivariate model to predict post-intervention verbal WM in patients with PD using a supervised machine learning approach. We test the predictive potential of novel learning parameters derived from the WMT and compare their predictiveness to other more commonly used domains including demographic, clinical, and cognitive data.
Methods: 37 patients with PD (age: 64.09±8.56, 48.6% female, 94.7% Hoehn & Yahr stage 2) participated in a 5-week WMT. Four random forest regression models including 1) cognitive variables only, 2) learning parameters only, 3) both cognitive and learning variables, and 4) the entire set of variables (with additional demographic and clinical data, 'all' model), were built to predict immediate and 3-month-follow-up WM.
Result: The 'all' model predicted verbal WM with the lowest root mean square error (RMSE) compared to the other models, at both immediate (RMSE = 0.184; 95% -CI=[0.184;0.185]) and 3-month follow-up (RMSE = 0.216; 95% -CI=[0.215;0.217]). Cognitive baseline parameters were among the most important predictors in the 'all' model. The model combining cognitive and learning parameters significantly outperformed the model solely based on cognitive variables.
Conclusion: Commonly assessed demographic, clinical, and cognitive variables provide robust prediction of response to WMT. Nonetheless, inclusion of training-inherent learning parameters further boosts precision of prediction models which in turn may augment training benefits following cognitive interventions in patients with PD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9661332 | PMC |
http://dx.doi.org/10.3233/JPD-223448 | DOI Listing |
Biomech Model Mechanobiol
January 2025
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always reliable. In this study, we introduce a novel, data-driven approach to predict fall parameters that lead to skull fractures in infants in order to aid in determinations of abusive head trauma.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India.
Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.
View Article and Find Full Text PDFSci Rep
January 2025
Computer Science Department, Faculty of Computers and Information, South Valley University, Qena, 83523, Egypt.
Adversarial attacks were commonly considered in computer vision (CV), but their effect on network security apps rests in the field of open investigation. As IoT, AI, and 5G endure to unite and understand the potential of Industry 4.0, security events and incidents on IoT systems have been enlarged.
View Article and Find Full Text PDFOncogene
January 2025
Early Cancer Institute, Cancer Research UK Cambridge Centre, Cambridge Biomedical Campus, Cambridge, UK.
Clear cell renal cell carcinoma (ccRCC) is characterised by significant genetic heterogeneity, which has diagnostic and prognostic implications. Very limited evidence is available regarding DNA methylation heterogeneity. We therefore generate sequence level DNA methylation data on 136 multi-region tumour and normal kidney tissue from 18 ccRCC patients, along with matched whole exome sequencing (85 samples) and gene expression (47 samples) data on a subset of samples.
View Article and Find Full Text PDFSci Rep
January 2025
Fischell Department of Bioengineering, University of Maryland, College Park, USA.
The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!