Opioid tolerance, opioid-induced hyperalgesia during repeated opioid administration, and chronic pain are associated with upregulation of adenylyl cyclase activity. The objective of this study was to test the hypothesis that a reduction in adenylyl cyclase 1 (AC1) activity or expression would attenuate morphine tolerance and hypersensitivity, and inflammatory pain using murine models. To investigate opioid tolerance and opioid-induced hyperalgesia, mice were subjected to twice daily treatments of saline or morphine using either a static (15 mg/kg, 5 days) or an escalating tolerance paradigm (10-40 mg/kg, 4 days). Systemic treatment with an AC1 inhibitor, ST03437 (2.5-10 mg/kg, IP), reduced morphine-induced hyperalgesia in mice. Lumbar intrathecal administration of a viral vector incorporating a short-hairpin RNA targeting reduced morphine-induced hypersensitivity compared to control mice. In contrast, acute morphine antinociception, along with thermal paw withdrawal latencies, motor performance, exploration in an open field test, and burrowing behaviors were not affected by intrathecal knockdown. Knockdown of by intrathecal injection also decreased inflammatory mechanical hyperalgesia and increased burrowing and nesting activity after intraplantar administration of Complete Freund's Adjuvant (CFA) one-week post-injection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479488PMC
http://dx.doi.org/10.3389/fphar.2022.937741DOI Listing

Publication Analysis

Top Keywords

adenylyl cyclase
12
inflammatory pain
8
opioid tolerance
8
tolerance opioid-induced
8
opioid-induced hyperalgesia
8
hyperalgesia mice
8
reduced morphine-induced
8
hyperalgesia
5
reduced activity
4
activity adenylyl
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!