Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: To investigate the mechanism by which total alkaloids of (TASA) and matrine (MT) impair biofilm to increase the susceptibility of () to ciprofloxacin.
Methods: The minimum biofilm inhibitory concentration (mBIC) was determined using a 2-fold dilution method. Structure of biofilm of was examined by Confocal Laser Scanning Microscope (CLSM). The cellular reactive oxygen species (ROS) was determined using a DCFH-DA assay. The key factors related to the regulation of ROS were accessed using respective kits.
Results: TASA and MT were more beneficial to impair biofilm of than ciprofloxacin (CIP) ( < 0.05). TASA and MT were not easily developed resistance to biofilm-producing . The mBIC of CIP decreased by 2-6-fold following the treatment of sub-biofilm inhibitory concentration (sub-BIC) TASA and MT, whereas the mBIC of CIP increased by 2-fold following a treatment of sub-BIC CIP from the first to sixth generations. TASA and MT can improve the production of ROS in biofilm-producing . The ROS content was decreased 23%-33% following the treatment of sub-mBIC CIP, whereas ROS content increased 7%-24% following treatment with TASA + CIP and MT + CIP combination from the first to sixth generations. Nitric oxide (NO) as a ROS, which was consistent with the previously confirmed relationship between ROS and drug resistance. Related regulatory factors-superoxide dismutase (SOD) and glutathione peroxidase (GSH) could synergistically maintain the redox balance .
Conclusion: TASA and MT enhanced reactive oxygen species to restore the susceptibility of to ciprofloxacin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476472 | PMC |
http://dx.doi.org/10.1016/j.chmed.2020.02.006 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!