The parameters used in theoretical modeling of vibrational patterns within Franck-Condon (FC) approximation can be adjusted to match the vibrationally well-resolved experimental absorption spectrum of molecules. These simulation parameters can then be used to reveal the structural changes occurring between the initial and final states assuming the harmonic oscillator approximation holds for both states. Such a theoretical approach has been applied to benzene and fluorobenzene to disclose the first excited-state geometries of both compounds. The carbon-carbon bond length of benzene in the B state has been calculated as 1.430 Å, which is in very good agreement with the experimental bond length of 1.432 Å. The FC spectral fit method has been exploited to reveal the B state of fluorobenzene as well. Commonly employed density functional theory (DFT) and time-dependent DFT methods have been used to calculate the ground- and excited-state geometries of both compounds, respectively. The comparison of geometrical parameters and vibrational frequencies at the relevant states shows that frequently used hybrid functionals perform quite well in the ground state, whereas their performances drop considerably while predicting the excited-state properties. Among the hybrid functionals studied, TD-B3LYP with 6-31+G(d) basis set can be chosen to calculate the excited-state properties of molecules, albeit with much less anticipation of accuracy from the performance that B3LYP usually shows at the ground state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9476181 | PMC |
http://dx.doi.org/10.1021/acsomega.2c04615 | DOI Listing |
J Chem Phys
January 2025
Ideal Vacuum Products, LLC, 5910 Midway Park Blvd. NE, Albuquerque, New Mexico 87109, USA.
The hydroxysilylene (HSiOH) molecule has been spectroscopically identified in the gas phase for the first time. This highly reactive species was produced in a twin electric discharge jet using separate precursor streams of 16O2/18O2 and Si2H6/Si2D6, both diluted in high pressure argon. The strongest and most stable laser induced fluorescence (LIF) signals were obtained by applying an electric discharge to each of the precursor streams and then merging the discharge products just prior to expansion into vacuum.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Istituto di Biostrutture e Bioimmagini-CNR (IBB-CNR), Via De Amicis 95, I-80145 Napoli, Italy.
We here simulate in the gas phase the population dynamics of guanine/cytosine (GC) and cytosine/guanine (CG) stacked dimers in B-DNA and A-DNA arrangement, following excitation in the lowest-energy band, and considering the four lowest-energy ππ* bright excited states, the three lowest-energy π* states, and the G → C charge-transfer (CT) state. We resort to a generalized Linear Vibronic Coupling (LVC) model parametrized with time-dependent density functional theory (TD-DFT) computations, exploiting a fragment-based diabatization and we run nonadiabatic quantum dynamical simulations with the multilayer version of the Multiconfigurational Time-Dependent Hartree (ML-MCTDH) approach. G → C CT results in a major decay process for GC in B-DNA but less in A-DNA arrangement, where also the population transfer to the lowest-energy excited state localized on C is an important intermonomer process.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Chemistry, The University of New South Wales (UNSW), Kensington, Sydney, 2052, Australia.
The synthesis and structural characterisation of [Ln(Tp)]I (1-Ln; Ln = La, Ce, Pr, Nd) (Tp = hydrotris(3-(2'-furyl)-pyrazol-1-yl)borate) have been reported as an isomorphous series adopting pseudo-icosahedral ligand field geometries. Continuous shape measurement (CShM) analyses on the crystal field environments of 1-Ln show the smallest values yet reported for complexes employing two hexadentate ligands (-scorpionate environments), with the smallest belonging to 1-La. Single-ion magnetism for 1-Ce, 1-Pr and 1-Nd was probed with ac magnetic susceptibility studies revealing slow magnetic relaxation for 1-Nd in applied magnetic fields and in zero-applied field for 1-Ce, which is a rare observation for Ce(III)-based single-ion magnets.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway.
Minimum energy conical intersections can be used to rationalize photochemical processes. In this Letter, we examine an algorithm to locate these structures that does not require the evaluation of nonadiabatic coupling vectors, showing that it minimizes the energy on hypersurfaces that envelop the intersection seam. By constraining the states to be separated by a small non-zero energy difference, the algorithm ensures that numerical artifacts and convergence problems of coupled cluster theory at conical intersections are not encountered during the optimization.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry & Biochemistry, University of Mississippi, University, MS 38677, USA.
Molecular dyes containing carbazole-based π bridges and/or julolidine-based donors should be promising molecules for intense SWIR emission with potential application to molecular bioimaging. This study stochastically analyzes the combinations of more than 250 organic dyes constructed within the D-π-D (or equivalently D-B-D) motif. These dyes are built from 22 donors (D) and 14 π bridges (B) and are computationally examined using density functional theory (DFT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!