Growing natural calamities as a consequence of global warming are one of the most pondering subjects today. The exponential growth of environmental pollution due to unscientific human exploitation of natural resources is considered the prime reason for the harsh responses of nature. Researchers from various fields of industry and academia are working hard to develop and implement products/technologies that are environmentally friendly or less harmful to the ecosystem. Material researchers, specifically those working in the automobile sector are also not behind in search of green products from eco-friendly raw materials and production methods. The automobile industry is collectively responsible for around 40% of global pollution in terms of greenhouse gas emissions. Out of which around 20-30% is originating from tyre production and its end-use. In this view, tyre production from eco-friendly raw materials and technologies that have minimum hazardousness to the environment is a hot research topic today. A few products in the market with "green" tags and many are in the pipeline for the recent future. This review summarises a detailed discussion of the emerging green technologies for tyre production and depicted comprehensive data from the available literature. The paper has been drafted from a well-balanced academic and industrial point of view since the researchers from both sectors are working in harmony for a better future for green tyre technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9465654 | PMC |
http://dx.doi.org/10.1007/s00289-022-04445-2 | DOI Listing |
Molecules
December 2024
LAQV/REQUIMTE, Associated Laboratory for Green Chemistry, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
This paper investigates the use of spent tyre rubber as a precursor for synthesising adsorbents to recover rare earth elements. Through pyrolysis and CO activation, tyre rubber is converted into porous carbonaceous materials with surface properties suited for rare earth element adsorption. The study also examines the efficiency of leaching rare earth elements from NdFeB magnets using optimised acid leaching methods, providing insights into recovery processes.
View Article and Find Full Text PDFProc Inst Mech Eng H
January 2025
Department of Medical Sciences & Technology, IIT Madras, Chennai, Tamil Nadu, India.
The use of ultrasound contrast agents (UCAs) for estimating portal pressure has recently gained attention due to its clinical promise, yet variability in acoustic amplitude poses challenges. UCAs contain microbubbles (1-10 µm in diameter), and understanding their acoustic response is essential to address this variability. However, systematic exploration of factors influencing microbubble behavior remains limited in current literature.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
(1) Car tyre microplastic particles (TMPs) significantly contribute to global microplastic pollution, with an estimated annual production of 6 million tonnes. However, the impact of TMPs, particularly tyre and road wear particles (TRWPs), resulting from tyre abrasion on the road on terrestrial organisms, is poorly understood. This study investigated the effects of TMPs and TRWPs on the growth, immune response, behaviour, and cognition of the woodlouse over 30 days; (2) TMPs and TRWPs were mixed together in the first experiment and provided at different concentrations of 1.
View Article and Find Full Text PDFEnviron Health Insights
January 2025
African Centre of Excellence for Public Health and Toxicological Research, University of Port Harcourt, Port Harcourt, Nigeria.
Materials (Basel)
December 2024
Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
This study investigates how recycled metal fibres from End-of-Life Tyres (ELTs) affect both microwave heating efficiency and crack healing properties in dense asphalt mixtures. The aim is to improve tyre recyclability by using their fibres in asphalt and exploring their self-healing potential with microwave heating. To achieve this, four dense asphalt mixture designs were studied in the laboratory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!