Among the different metal oxide nanoparticles, zinc oxide nanoparticles have gained significant importance due to their antibacterial properties against clinically pathogenic bacteria during the organal development. In the present study, biogenic zinc oxide nanoparticles were synthesized using seed extract of by a simple, cost-effective, and green chemistry approach. The synthesized ZnO NPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Dynamic Light Scattering, and Scanning Electron Microscopy. Next, the antimicrobial activity of ZnO NPs was tested against clinically pathogenic bacteria, ., , , , and . Followed by, ZnO NPs were evaluated for the development of caudal fin in Zebrafish. The UV-Vis spectram result showed a band at 380 nm and FTIR results confirmed the ZnO NPs. The average crystallite size of the ZnO NPs was 52.65 ± 0.5 nm by the Debye Scherrer equation and SEM showed spherical-shaped particles. A zone of inhibition around ZnO NPs applied to indicates sensitive to ZnO NPs followed by . Among the four different bacterial pathogens, was the most susceptible compared to the other three pathogens. The calculated sub-lethal concentration of ZnO NPs at 96 h was 153.8 mg/L with a 95% confidence limit ranging from 70.62 to 214.18 mg/L, which was used with partially amputated zebrafish caudal fin growth. A significant (p < 0.5) development (95%) in the amputated caudal fin was detected at 12 days post-amputation. Low concentrated ZnO NPs can reduce developmental malformation. Collectively, suggested results strongly proved that lemon seed-mediated synthesized ZnO NPs had a good pathogenic barrier for bacterial infection during the external organal development for the first time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9475272PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e10406DOI Listing

Publication Analysis

Top Keywords

zno nps
44
caudal fin
16
oxide nanoparticles
12
zno
11
nps
11
zebrafish caudal
8
zinc oxide
8
clinically pathogenic
8
pathogenic bacteria
8
organal development
8

Similar Publications

Introduction: is a medicinal plant that produces silymarin, which has been demonstrated to possess antiviral, anti-neurodegenerative, and anticancer activities. Silybin (A+B) are two major hepatoprotective flavonolignans produced predominantly in fruits. Several attempts have been made to increase the synthesis of silymarin, or its primary components, silybin (A+B).

View Article and Find Full Text PDF

This study investigates the synergistic effects of zinc oxide nanoparticles (ZnO NPs) and melatonin (MT) on Fragaria × ananassa (strawberry) plants under drought stress, focusing on growth, fruit biomass, and stress tolerance. ZnO NPs enhance nutrient uptake and stress resistance, while MT regulates growth hormones and boosts photosynthetic efficiency. Seven treatments were evaluated: T1 (no stress, 0.

View Article and Find Full Text PDF

Zinc (Zn)-based batteries have been persistently challenged by the critical issue of inhomogeneous zinc deposition/stripping process on substrate surface. Herein, we reveal that zinc electrodeposition behaviors dramatically improved through the introduction of highly zincophilic copper oxide nanoparticles (CuO NPs). Strong electronic redistribution between Zn and CuO explains the high Zn affinity on CuO, with negligible nucleation overpotential.

View Article and Find Full Text PDF

Three different methods for ZnO-RGO nanocomposite synthesis and its adsorption capacity for methylene blue dye removal in a comparative study.

BMC Chem

January 2025

Environmental Applications of Nanomaterial's Lab., Department of Chemistry, Faculty of Science, Aswan University, Aswan, 81528, Egypt.

Water is one of the vital needs of life. However, due to rapid industrialization, urbanization and lack of awareness, the world population now facing the threat of water shortage. To ensure that future living conditions are preserved, it is crucial to reduce water pollution and protect the ecosystem.

View Article and Find Full Text PDF

The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!