The regulatory effects of uneven phosphorus supplies on phosphorus transport in soybean roots are still unclear. To further analyze the regulatory effects of low-phosphorus stress on phosphorus transport in soybean roots and the effects of uneven phosphorus application on the physiological mechanism of phosphorus transport in soybean roots, dual-root soybean plants were prepared via grafting, and a sand culture experiment was performed. From the unfolded cotyledon stage to the initial flowering stage, one side of each dual-root soybean system was irrigated with a low-phosphorus-concentration solution (phosphorus-application [P+] side), and the other side was irrigated with a phosphorus-free nutrient solution (phosphorus-free [P-] side); this setup allowed the study of the effects of different phosphorus supply levels on the expression of genes and proteins and the accumulation of metabolites in soybean roots on the P- side to clarify the method through which phosphorus transport is regulated in soybean roots and to provide a theoretical basis for improving the use rate of phosphorus fertilizer. The results revealed that the unilateral supply of low-concentration phosphorus promoted the uptake of phosphorus by soybean roots and the transport of phosphorus from the P+ side to the P- side. Compared with the normal concentration of phosphorus supply and the phosphorus-free supply, the low concentration phosphorus supply affected the regulation of the metabolic pathways involved in starch and sucrose metabolism, glycolysis, fructose, and mannose metabolism, etc., thereby affecting soybean root phosphorus transport. The low-phosphorus stress inhibited fructose synthesis and sucrose synthase synthesis in the soybean roots and the synthesis of hexokinase (HK) and fructose kinase, which catalyzes the conversion of fructose to fructose-6-phosphate. Low-phosphorus stress promoted the synthesis of sucrose invertase and the conversion of sucrose into maltose by the activity of starch synthase (StS) and stimulated the synthesis of UDPG pyrophosphorylase (UGP) and phosphoglucose isomerase (GP1), which is involved in the conversion of UDP-glucose to glucose-6-phosphate. The phosphorus transport pathway of soybean roots was then affected, which promoted phosphorus allocation to UTP and glucose-6-phosphate. Additionally, low-phosphorus stress hastened glycolysis in the soybean roots and inhibited the synthesis of malic acid, thereby promoting the transport of phosphorus in the roots. In addition, low-phosphorus stress inhibited the synthesis of fructose, mannose, and mannose-1-phosphate and the synthesis of other enzymes involved in phosphorus transport as well as invertase, thereby inhibiting the transport and synthesis of several organic phosphorus-containing compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478169PMC
http://dx.doi.org/10.3389/fpls.2022.992036DOI Listing

Publication Analysis

Top Keywords

soybean roots
40
phosphorus transport
32
low-phosphorus stress
24
phosphorus
19
transport soybean
16
soybean
13
regulatory effects
12
phosphorus supply
12
transport
11
roots
11

Similar Publications

Brassinosteroids (BRs) are key phytohormones influencing soybean development, yet their role in symbiosis remains unclear. Here, the RNA-Seq was used to identify important gene associated with BRs and symbiotic nitrogen fixation, and the function of candidate gene was verified by transgenic hairy roots. The result shows that the RNA-Seq analysis was conducted in which BR signaling was found to suppress nodule formation and many DEGs enriched in immunity-related pathways.

View Article and Find Full Text PDF

We generated soybean mutants related to two ß-amyrin synthase genes using DNA-free site-directed mutagenesis system. Our results suggested that one of the genes is predominant in the soyasaponin biosynthesis. Soyasaponins, which are triterpenoid saponins contained in soybean [Glycine max (L.

View Article and Find Full Text PDF

Construction of Sub-nano Channels of Amino Pillar[6]arene Inspired Biomimetic Porous Roots for Specific Remove of Imazamox.

Chemistry

January 2025

State Key Laboratory of NBC Protection for Civilian, State Key Laboratory of NBC Protection for Civilian,, Beijing, CHINA.

The root ducts play an important role in the plant's transport of nutrients from the soil. Based on the selective transport characteristics of plant roots, amino pillar[6]arene bionic porous root sub-nano channel membrane were constructed to remove Imazamox. Imazamox (IM) is an effective imidazolinone herbicide frequently utilized in soybean fields to control a wide range of annual grasses and broad-leaved weeds.

View Article and Find Full Text PDF

Enhancing Soybean Salt Tolerance with GSNO and Silicon: A Comprehensive Physiological, Biochemical, and Genetic Study.

Int J Mol Sci

January 2025

Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().

View Article and Find Full Text PDF

Suppression of Nodule Formation by RNAi Knock-Down of in .

Genes (Basel)

January 2025

Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.

Background/objectives: The balanced regulation of innate immunity plays essential roles in rhizobial infection and the establishment and maintenance of symbiosis. The evolutionarily conserved cell death suppressor Bax inhibitor-1 plays dual roles in nodule symbiosis, providing a valuable clue in balancing immunity and symbiosis, while it remains largely unexplored in the legume .

Methods/results: In the present report, the gene family of was identified and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!