When plants are subjected to various biotic and abiotic stresses, the root system responds actively by secreting different types and amounts of bioactive compounds, while affects the structure of rhizosphere soil bacterial community. Therefore, understanding plant-soil-microbial interactions, especially the strength of microbial interactions, mediated by root exudates is essential. A short-term experiment was conducted under drought and salt stress to investigate the interaction between root exudates and rhizosphere bacterial communities. We found that drought and salt stress increased rhizosphere soil pH (9.32 and 20.6%) and electrical conductivity (1.38 and 11 times), respectively, while decreased organic matter (27.48 and 31.38%), total carbon (34.55 and 29.95%), and total phosphorus (20 and 28.57%) content of rhizosphere soil. Organic acids, growth hormones, and sugars were the main differential metabolites of under drought and salt stress. Salt stress further changed the rhizosphere soil bacterial community structure, markedly decreasing the relative abundance of Bacteroidota as r-strategist while increasing that of Alphaproteobacteria as k-strategists. The co-occurrence network analysis showed that drought and salt stress reduced the connectivity and complexity of the rhizosphere bacterial network. Soil physicochemical properties and root exudates in combination with salt stress affect bacterial strategies and interactions. Our study revealed the mechanism of plant-soil-microbial interactions under the influence of root exudates and provided new insights into the responses of bacterial communities to stressful environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9471988 | PMC |
http://dx.doi.org/10.3389/fpls.2022.997292 | DOI Listing |
Introduction: Chronic ischemic heart failure is a major global health issue despite advancements in therapy. Stem cell (SC) therapy has emerged as a potential treatment, but its effectiveness remains uncertain. This study aimed to systematically review and meta-analyze the current evidence on SC therapy's efficacy.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Agriculture and Biology, Liaocheng University, Liaocheng, China.
The wall-associated kinase (WAK) gene family encodes functional cell wall-related proteins. These genes are widely presented in plants and serve as the receptors of plant cell membranes, which perceive the external environment changes and activate signaling pathways to participate in plant growth, development, defense, and stress response. However, the WAK gene family and the encoded proteins in soybean (Glycine max (L.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Institute of Plant Biotechnology, Indian Council of Agricultural Research (ICAR), New Delhi, India.
The methylation- demethylation dynamics of RNA plays major roles in different biological functions, including stress responses, in plants. mA methylation in RNA is orchestrated by a coordinated function of methyl transferases (writers) and demethylases (Erasers). Genome-wide analysis of genes involved in methylation and demethylation was performed in pigeon pea.
View Article and Find Full Text PDFPlanta
January 2025
Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
Under salt stress, autophagy regulates ionic balance, scavenges ROS, and supports nutrient remobilization, thereby alleviating osmotic and oxidative damage. Salt stress is a major environmental challenge that significantly impacts plant growth and agricultural productivity by disrupting nutrient balance, inducing osmotic stress, and causing the accumulation of toxic ions like Na. Autophagy, a key cellular degradation and recycling pathway, plays a critical role in enhancing plant salt tolerance by maintaining cellular homeostasis and mitigating stress-induced damage.
View Article and Find Full Text PDFAldose reductase (ALR) is closely related to the plant's response to abiotic stresses. Previous transcriptome data from the salt-tolerant Tritipyrum Y1805 indicated that an ALR-related gene was highly upregulated under salt stress. The gene, TtALR1, was successfully cloned from Y1805, with a coding sequence length of 960 bp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!