The extracellular matrix (ECM) is critical for maintaining tissue homeostasis therefore its production, assembly and mechanical stiffness are highly regulated in normal tissues. However, in solid tumors, increased stiffness resulting from abnormal ECM structural changes is associated with disease progression, an increased risk of metastasis and poor survival. As a dynamic and key component of the tumor microenvironment, the ECM is becoming increasingly recognized as an important feature of tumors, as it has been shown to promote several hallmarks of cancer biochemical and biomechanical signaling. In this regard, melanoma cells are highly sensitive to ECM composition, stiffness and fiber alignment because they interact directly with the ECM in the tumor microenvironment cell surface receptors, secreted factors or enzymes. Importantly, seeing as the ECM is predominantly deposited and remodeled by myofibroblastic stromal fibroblasts, it is a key avenue facilitating their paracrine interactions with melanoma cells. This review gives an overview of melanoma and further describes the critical roles that ECM properties such as ECM remodeling, ECM-related proteins and stiffness play in cutaneous melanoma progression, tumor cell plasticity and therapeutic resistance. Finally, given the emerging importance of ECM dynamics in melanoma, future perspectives on therapeutic strategies to normalize the ECM in tumors are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9479148 | PMC |
http://dx.doi.org/10.3389/fonc.2022.924553 | DOI Listing |
Microbiol Spectr
January 2025
Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
is a vector of several human pathogens in the United States, including the cause of Lyme disease, and Powassan virus (POWV), an emerging cause of severe encephalitis. Skin biopsies from tick bite sites are frequently collected and tested for the presence of spirochetes ( spp.), which remain elusive.
View Article and Find Full Text PDFCells
January 2025
Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
Neuroinflammation is a complex and multifaceted process that involves dynamic interactions among various cellular and molecular components. This sophisticated interplay supports both environmental adaptability and system resilience in the central nervous system (CNS) but may be disrupted during neuroinflammation. In this article, we first characterize the key players in neuroimmune interactions, including microglia, astrocytes, neurons, immune cells, and essential signaling molecules such as cytokines, neurotransmitters, extracellular matrix (ECM) components, and neurotrophic factors.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Periodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia, Phone: +082146474590, e-mail:
Aims: This study investigated the effect of injection of adipose stem cells (ASCs) on the expression of type VII and VIII collagen in Wistar rat's gingiva. Adipose stem cells can modulate the immune system, angiogenesis, wound healing, and extracellular matrix (ECM) remodeling.
Materials And Methods: Ten Wistar rats aged three months were divided into two groups: the treatment group and the control group.
Mater Today Bio
February 2025
Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China.
Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, PR China.
A meniscus injury is a common cartilage disease of the knee joint. Despite the availability of various methods for the treatment of meniscal injuries, the poor regenerative capacity of the meniscus often necessitates resection, leading to the accelerated progression of osteoarthritis. Advances in tissue engineering have introduced meniscal tissue engineering as a potential treatment option.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!