Mobility reductions following the COVID-19 pandemic in the United States were higher, and sustained longer, for aviation than ground transportation activity. We evaluate changes in ultrafine particle (UFP, Dp < 100 nm, a marker of fuel-combustion emissions) concentrations at a site near Logan Airport (Boston, Massachusetts) in relation to mobility reductions. Several years of particle number concentration (PNC) data prepandemic [1/2017-9/2018] and during the state-of-emergency (SOE) phase of the pandemic [4/2020-6/2021] were analyzed to assess the emissions reduction impact on PNC, controlling for season and wind direction. Mean PNC was 48% lower during the first three months of the SOE than prepandemic, consistent with 74% lower flight activity and 39% (local)-51% (highway) lower traffic volume. Traffic volume and mean PNC for all wind directions returned to prepandemic levels by 6/2021; however, when the site was downwind from Logan Airport, PNC remained lower than prepandemic levels (by 23%), consistent with lower-than-normal flight activity (44% below prepandemic levels). Our study shows the effect of pandemic-related mobility changes on PNC in a near-airport community, and it distinguishes aviation-related and ground transportation source contributions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9477096 | PMC |
http://dx.doi.org/10.1021/acs.estlett.2c00322 | DOI Listing |
Microorganisms
January 2025
UK Health Security Agency, London E14 4PU, UK.
Background: Patients in critical care units (CCUs) are at an increased risk of bloodstream infections (BSIs), which can be associated with central vascular catheters (CVCs). This study describes BSIs, CVC-BSIs, organism distribution, percentage of antimicrobial resistant (AMR) organisms, and case fatality rates (CFRs) over the first six years of a voluntary national CCU surveillance programme in England.
Methods: Surveillance data on BSIs, CVCs, and bed-days between 04/2017 and 03/2023 for adult CCUs were linked to mortality and AMR data, and crude rates were calculated.
Microorganisms
December 2024
Systems Virology, Faculty of Medicine, Lund University, 223 62 Lund, Sweden.
SARS-CoV-2 can cause clinical and inapparent disease and mortality in several animals cohabitating with humans, and sheep are susceptible to SARS-CoV-2 due to virus-receptor interactions similar to those in humans. Hence, sheep have the potential to be infected, spread, and develop neutralising antibodies (NAbs) against SARS-CoV-2. The aim of this study was to investigate the prevalence of SARS-CoV-2 NAbs in farm animals after natural exposure to the virus.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Faculty of Economics and Business Administration, University of Craiova, 200585 Craiova, Dolj, Romania.
Background/objectives: Globally, healthcare systems face challenges in optimizing performance, particularly in the wake of the COVID-19 pandemic. This study focuses on the analysis and forecasting of key performance indicators (KPIs) for the County Emergency Clinical Hospital in Craiova, Romania. The study evaluates indicators such as average length of stay (ALoS), bed occupancy rate (BOR), number of cases (NC), case mix index (CMI), and average cost per hospitalization (ACH), providing insight into their dynamics and future trends.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, P.O. Box: 41635-1438, Rasht, 4199843653, Iran.
During the COVID-19 pandemic, the level of physical activity (PA) has been reported to decrease worldwide. A sedentary lifestyle is widely recognized as a significant risk factor for various diseases, necessitating extensive big data analysis to uncover the diverse aspects linked to the COVID-19 pandemic. Therefore, the aim of this study was to investigate the impact of the COVID-19 pandemic on PA levels across diverse population subsets in Iran and to identify the barriers to PA during the fifth wave of COVID-19 outbreak.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Programa de Pós Graduação Em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, Porto, Pelotas, RS, 96010020, Brazil.
The PM/PM ratio is a metric used to distinguish the primary sources of particulate matter (PM) within a given environment. Higher ratios often indicate significant contributions from anthropogenic sources, while smaller ratios suggest a substantial influence from natural origins. However, various contextual factors can influence this ratio.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!