AI Article Synopsis

  • - Phelan-McDermid syndrome (PMS) is a developmental disorder linked to deletions at chromosome 22q13.3 and genetic variants in a specific gene, resulting in hypotonia, developmental delays, autism, and other features.
  • - To diagnose PMS, various genetic tests like karyotyping and whole exome sequencing have been utilized, with findings from both prenatal and postnatal cases analyzed to identify genetic defects and their correlations with clinical symptoms.
  • - In a study of Chinese patients, there were 7 prenatal and 14 postnatal PMS cases identified, with a majority due to chromosomal deletions; about 85% of prenatal diagnoses led to pregnancy termination post-counseling.

Article Abstract

Phelan-McDermid syndrome (PMS), caused by deletions at 22q13.3 and pathogenic variants in the gene, is a rare developmental disorder characterized by hypotonia, developmental delay (DD), intellectual disability (ID), autism spectrum disorder (ASD), dysmorphic features, absence of or delayed language, and other features. Conventional karyotyping, chromosomal microarray analysis (CMA), and whole exome sequencing (WES) have been used to detect genetic defects causing PMS. We summarized the genetic and clinical findings from prenatal to postnatal stages of detected cases of PMS and mapped potential candidate haploinsufficient genes for deletions of 22q13. This study aimed to summarize the laboratory findings, genetic defects, and genotype-phenotype correlations for Chinese patients with PMS. Seven prenatal cases and fourteen postnatal cases were diagnosed with PMS in our center. Thirteen cases had a deletion ranging in size from 69 to 9.06 Mb at 22q13.2-q13.33, and five cases had a pathogenic variant or an intragenic deletion in the gene. Three familial cases with a parental carrier of a balanced translocation were noted. A review of the literature noted another case series of 29 cases and a report of five cases of PMS in China. Genotype-phenotype correlations confirmed haploinsufficiency of the gene for PMS and suggested other candidate haploinsufficient genes and genes for immunological features and , , and genes for intellectual impairment and behavioral abnormality, neurological features, macrocephaly/hypotonia, oculopathy, and renal adysplasia, respectively. Indications for prenatal diagnosis of PMS are not specific, and approximately 85% prenatally diagnosed PMS elected termination of pregnancies after genetic counseling. For postnatal cases, 62.5% were caused by a deletion at 22q13 and 37.5% were caused by a pathogenic variant or an intragenic deletion in the gene. Approximately 6.7% of cases with a deletion were familial, and almost all pathogenic variants were . Combined karyotype, CMA, and WES should be performed to increase the diagnostic yield. The identification of other candidate haploinsufficient genes in deletions of 22q13.2-q13.33 could relate to more severe dysmorphic features, neurologic defects, and immune deficiency. These results provided evidence for diagnostic interpretation, genetic counseling, and clinical management for the Chinese cases of PMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470928PMC
http://dx.doi.org/10.3389/fgene.2022.961196DOI Listing

Publication Analysis

Top Keywords

cases
12
cases pms
12
candidate haploinsufficient
12
haploinsufficient genes
12
pms
10
prenatal postnatal
8
phelan-mcdermid syndrome
8
report cases
8
review literature
8
pathogenic variants
8

Similar Publications

Background: The presence of multiple comorbid pathologic features in late-onset dementia has been well documented across cohort studies that incorporate autopsy evaluation. It is likely that such mixed pathology potentially confounds the results of interventional trials that are designed to target a solitary pathophysiologic mechanism in Alzheimer's disease and related dementias (ADRD).

Method: The UK ADRC autopsy database was screened for participants who had previously engaged in therapeutic interventional trials for Alzheimer's disease, vascular cognitive impairment, dementia, and/or ADRD prevention trials from 2005 to the present.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Fundacion Neuropolis, Zaragoza, Zaragoza, Spain.

Background: The therapeutic management of dementia with Lewy bodies (LBD) is a challenge given the high sensitivity to drugs in this disease. This is particularly sensitive with regard to the management of parkinsonism. In particular, treatment of motor symptoms with levodopa or dopaminergic agonists poses a risk of worsening cognitive and behavioral symptoms.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

AIMST University, Bedong, Kedah, Malaysia.

Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: The Apolipoprotein E4 isoform (ApoE4), encoded by the APOE gene, stands out as the most influential genetic factor in late-onset Alzheimer's disease (LOAD). The ApoE4 isoform contributes to metabolic and neuropathological abnormalities during brain aging, with a strong correlation observed in APOE4-positive Alzheimer's disease cases between phosphorylated tau burden and amyloid deposition. Despite compelling evidence of APOE-mediated neuroinflammation influencing the progression of tau-mediated neurodegeneration, the molecular mechanisms underlying these phenomena remain largely unknown.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most prevalent cause of dementia accounting for an estimated 60% to 80% of cases. Despite advances in the research field, developing truly effective therapies for AD symptoms remains a major challenge. Sweet almond contain nutrients that have the potential of combating age-related brain dysfunction, by improving learning, memory and neurocognitive performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!