High-fat diet (HFD) feeding rewires circadian rhythms of peripheral organs including the liver and adipose tissue. While the liver has been extensively studied, it remains largely unknown whether and how HFD organizes circadian biology in adipose tissue. Here, we took a systems approach to profile the diurnal transcriptome of adipose tissue in diet-induced obese mice either fed a low-fat diet (LFD) that reduces weight or still fed HFD. We detected about 200 and 2,500 diurnal genes in HFD and LFD, respectively. Pathway analysis revealed that rhythmic pathways in HFD are represented by circadian rhythm, ribosome biogenesis, and nucleosome organization, whereas those in LFD are represented by myeloid cell function. Remarkably, the majority of the circadian clock genes, except exhibited robust diurnal rhythm in the adipose tissue of HFD-fed mice. Analysis of mRNAs and proteins in another cohort of HFD-fed mice confirmed that lost rhythmicity at the transcript, but not protein level. Diet reversal to LFD specifically restored diurnal difference of the transcripts in adipose tissue. We matched transcriptomics data with global profiling of neutral lipids and found that lipid metabolism catalyzed by triglycerol hydrolase is a key circadian feature that is activated by diet reversal. Together, our work defines the circadian signatures in the adipose tissue of diet-induced obese mice, and their flexibility upon dietary intervention, thereby shedding light on potential clock-modulated tissue-specific pathways during obesity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9471008 | PMC |
http://dx.doi.org/10.3389/fphys.2022.953237 | DOI Listing |
Sci Rep
January 2025
The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments.
View Article and Find Full Text PDFSci Rep
January 2025
School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
This study presents an advanced dynamic finite element (FE) model of multiple components of the breast to examine the biomechanical impact of different types of physical activities and activity intensity on the breast tissues. Using 4D scanning and motion capture technologies, dynamic data are collected during different activities. The accuracy of the FE model is verified based on relative mean absolute error (RMAE), and optimal material parameters are identified by using a validated stepwise grid search method.
View Article and Find Full Text PDFBMJ Open
January 2025
Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
Introduction: The infrapatellar fat pad and synovium are the sites of immune cell infiltration and the origin of proinflammation. Studies have shown that Hoffa's synovitis may be a sign of early-stage osteoarthritis (OA). However, there have been no effective interventions specifically for Hoffa's synovitis.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science and Technology, Northwest University, Xi'an 710069, Shaanxi, China; Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an 710069, Shaanxi, China; Research Center of Food Safety Risk Assessment and Control, Xi'an 710069, Shaanxi, China. Electronic address:
Apple polyphenols (APP) can reduce obesity. However, the effects of APP on abdominal subcutaneous adipose tissue (aSAT) at metabolic level were unclear. In this study, 5-week APP intervenes were conducted on 10-week high-fat diet (HFD) feeding mice with doses of 200 and 500 mg/kg b.
View Article and Find Full Text PDFBiomed Mater
January 2025
Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University, No. 301, Middle Yanchang Road, Shanghai, 200011, CHINA.
The reconstruction of large-sized soft tissue defects remains a substantial clinical challenge, with adipose tissue engineering emerging as a promising solution. The acellular dermal matrix (ADM), known for its intricate spatial arrangement and active cytokine involvement, is widely employed as a scaffold in soft tissue engineering. Since ADM shares high similarity with decellularized adipose matrix, it holds potential as a substitute for adipose tissue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!