Multivariate survival models are often used in studying multiple outcomes for right-censored data. However, the outcomes of interest often have competing risks, where standard multivariate survival models may lead to invalid inferences. For example, patients who had stem cell transplantation may experience multiple types of infections after transplant while reconstituting their immune system, where death without experiencing infections is a competing risk for infections. Such competing risks data often suffer from cluster effects due to a matched pair design or correlation within study centers. The cumulative incidence function (CIF) is widely used to summarize competing risks outcomes. Thus, it is often of interest to study direct covariate effects on the CIF. Most literature on clustered competing risks data analyses is limited to the univariate proportional subdistribution hazards model with inverse probability censoring weighting which requires correctly specifying the censoring distribution. We propose a marginal semiparametric transformation model for multivariate competing risks outcomes. The proposed model does not require modeling the censoring distribution, accommodates nonproportional subdistribution hazards structure, and provides a platform for joint inference of all causes and outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650627PMC
http://dx.doi.org/10.1002/sim.9573DOI Listing

Publication Analysis

Top Keywords

competing risks
24
risks data
12
marginal semiparametric
8
semiparametric transformation
8
multivariate competing
8
multivariate survival
8
survival models
8
outcomes interest
8
infections competing
8
risks outcomes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!