Purification of RgpA from external outer membrane vesicles of Porphyromonas gingivalis.

Anaerobe

Universidad Nacional de Colombia, Facultad de Odontología, Carrera 30 No. 45-03, Edificio 210, Oficina 301, Bogotá D.C, Colombia.

Published: October 2022

Introduction: Purification of native gingipains is challenging because these proteases are frequently associated with the cell surface, which affects yield. This study aimed to purify native Arg-gingipain (RgpA) from Porphyromonas gingivalis Outer Membrane Vesicles (OMV).

Methods: Native RgpA was purified from P. gingivalis strain ATCC33277 OMV using a strategy including ultracentrifugation, sonication, and successive anionic and cationic fast protein liquid chromatography (FPLC). The presence and purity of the protease were confirmed by SDS-PAGE and detection of protease activity using fluorogenic substrates. Rat antibodies produced against the unique adhesin hemagglutinin (H1) domain of RgpA (amino acids 719-865) were titrated by ELISA at a 1:100 dilution using whole P. gingivalis lysate as an antigen and western blotting to detect a 75 kDa band corresponding to RgpA.

Results: Double anionic-cationic FLPC yielded prominent peaks with evident amidolytic gingipain activity of the appropriate molecular weight, as confirmed by western blotting. The final RgpA yield from 1 L of bacterial culture with colony forming unit (CFU) (Log) 7.4 ± 0.08/mL was of 12.6% (2 mg/mL), with 3.2 FU/μg of amidolytic activity.

Conclusions: This protocol allows purification of native RgpA from OMV that retains protease activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anaerobe.2022.102647DOI Listing

Publication Analysis

Top Keywords

outer membrane
8
membrane vesicles
8
porphyromonas gingivalis
8
purification native
8
native rgpa
8
protease activity
8
western blotting
8
rgpa
5
purification rgpa
4
rgpa external
4

Similar Publications

Optimizing Nanobubble Production in Ceramic Membranes: Effects of Pore Size, Surface Hydrophobicity, and Flow Conditions on Bubble Characteristics and Oxygenation.

Langmuir

January 2025

John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey 07102, United States.

Precise control of nanobubble size is essential for optimizing the efficiency and performance of nanobubble applications across diverse fields, such as agriculture, water treatment, and medicine. Producing fine bubbles, including nanobubbles, is commonly achieved by purging gas through porous media, such as ceramic or polymer membranes. Many operational factors and membrane properties can significantly influence nanobubble production and characteristics.

View Article and Find Full Text PDF

The bacterium is able to invade lung epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, it is currently unclear how OMVs from (PA-OMVs) affect lung epithelial cells and their impact on oxidative stress, autophagy, and other physiological activities of lung epithelial cells. In this study, we found that PA-OMVs activated oxidative stress and autophagy in cells.

View Article and Find Full Text PDF

Bacteria encounter chemically similar nutrients in their environment, which impact their growth in distinct ways. Among such nutrients are cobamides, the structurally diverse family of cofactors related to vitamin B (cobalamin), which function as cofactors for diverse metabolic processes. Given that different environments contain varying abundances of different cobamides, bacteria are likely to encounter cobamides that enable them to grow robustly and also those that do not function efficiently for their metabolism.

View Article and Find Full Text PDF

Our current understanding of protein folding is based predominantly on studies of small (<150 aa) proteins that refold reversibly from a chemically denatured state. As protein length increases, the competition between off-pathway misfolding and on-pathway folding likewise increases, creating a more complex energy landscape. Little is known about how intermediates populated during the folding of larger proteins affect navigation of this more complex landscape.

View Article and Find Full Text PDF

Unlabelled: The complement cascade is a front-line defense against pathogens. Complement activation generates the membrane attack complex (MAC), a 10-11 nm diameter pore formed by complement proteins C5b through C8 and polymerized C9. The MAC embeds within the outer membrane of Gram-negative bacteria and displays bactericidal activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!