In order to reduce CO emissions, as well as realize the resource utilization of waste dander (WD) and the goal of international "peak carbon dioxide emissions" and "carbon neutrality", Biochar was prepared with WD via pyrolysis technology, achieving CaSO in situ generated on its surface, which could be used to inhibit soil organic carbon (SOC) from mineralizing and enhance soil carbon sequestration ability. The characterization results showed that the unstable carbon (C) structures as well as more conjugated structures were generated on Ca-BC, obtaining an increased C sequestration of Ca-BC to 21.70 %. With the application of Ca-BC, the mineralization rate of SOC was reduced to 0.451 mg CO/(g·d), and the soil moisture content, pH and TOC content were increased to 45.48 %, 7.96 and 47.19 %. In addition, the bioinformatics analysis and redundancy analysis revealed that the application of Ca-BC promoted bacteria to convert into the stable C-dominant phyla (Firmicutes).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158776DOI Listing

Publication Analysis

Top Keywords

waste dander
8
soil organic
8
organic carbon
8
application ca-bc
8
carbon
5
situ formed
4
formed caso
4
caso waste
4
dander biochar
4
biochar inhibit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!