CD82, a tetraspanin superfamily member, has been identified to be glycosylated at three specific residues (Asn129, Asn157, and Asn198). However, CD82 post-translational modification and its effect on colorectal cancer (CRC) metastasis remain unclear. Here, we constructed various deficient mutants of CD82 N-glycosylation in SW620 cells and demonstrated that the Asn157 site is necessary for CD82 glycosylation in CRC cells migration and LN-dependent adhesion in vitro. Furthermore, we found that CD82 N-glycosylation at the Asn157 site leads to lower expression levels of vimentin and claudin-1 but higher expression levels of E-cadherin, which are the EMT markers; also, there are lower expression levels of phospho-GSK3β and less β-catenin transportation to the nucleus. These findings suggest that CD82 N-glycosylation at the Asn157 site inhibits EMT by down-regulating the Wnt/β-catenin pathway. Moreover, we reported that CD82 with N-glycosylation at a single site of the Asn157 reduces lung metastases in vivo. The results indicate that N-glycosylation of CD82 at the Asn157 site regulates CRC metastasis and adhesion. These observations suggest that the N-glycosylation of CD82 might be a potential therapeutic target for CRC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2022.08.079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!