Mitigating urinary incontinence condition using machine learning.

BMC Med Inform Decis Mak

Department of Industrial and Systems Engineering, Samuel Ginn College of Engineering, Auburn University, 345 W Magnolia Ave, Auburn, AL, 36849, USA.

Published: September 2022

Background: Urinary incontinence (UI) is the inability to completely control the process of releasing urine. UI presents a social, medical, and mental issue with financial consequences.

Objective: This paper proposes a framework based on machine learning for predicting urination time, which can benefit people with various degrees of UI.

Method: A total of 850 data points were self-recorded by 51 participants to investigate how different factors impact urination time. The participants were instructed to record input data (such as the time of consumption and the number of drinks) and output data (i.e., the time the individual urinated). Other factors, such as age and BMI, were also considered. The study was conducted in two phases: (1) data was prepared for modeling, including missing values, data encoding, and scaling; and (2) a classification model was designed with four output classes of the next urination time: <  = 30 min, 31-60 min, 61-90 min, > 90 min. The model was built in two steps: (1) feature selection and (2) model training and testing. Feature selection methods such as lasso regression, decision tree, random forest, and chi-square were used to select the best features, which were then used to train an extreme gradient boosting (XGB) algorithm model to predict the class of the next urination time.

Result: The feature selection steps resulted in nine features considered the most important features affecting UI. The accuracy, precision, recall, and F1 score of the XGB predictive model are 0.70, 0.73, 0.70, and 0.71, respectively.

Conclusion: This research is the first step in developing a machine learning model to predict when a person will need to urinate. A precise predictive instrument can enable healthcare providers and caregivers to assist people with various forms of UI in reliable, prompted voiding. The insights from this predictive model can allow future apps to go beyond current UI-related apps by predicting the time of urination using the most relevant factors that impact voiding frequency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482256PMC
http://dx.doi.org/10.1186/s12911-022-01987-3DOI Listing

Publication Analysis

Top Keywords

machine learning
12
feature selection
12
urinary incontinence
8
urination time
8
factors impact
8
data time
8
model predict
8
predictive model
8
model
7
urination
5

Similar Publications

Background: Artificial sweeteners (AS) have been widely utilized in the food, beverage, and pharmaceutical industries for decades. While numerous publications have suggested a potential link between AS and diseases, particularly cancer, controversy still surrounds this issue. This study aims to investigate the association between AS consumption and cancer risk.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) is a chronic and progressive lung disease. Disulfidptosis-related genes (DRGs) may be involved in the pathogenesis of COPD. From the perspective of predictive, preventive, and personalized medicine (PPPM), clarifying the role of disulfidptosis in the development of COPD could provide a opportunity for primary prediction, targeted prevention, and personalized treatment of the disease.

View Article and Find Full Text PDF

Background: In the last years, artificial intelligence (AI) has contributed to improving healthcare including dentistry. The objective of this study was to develop a machine learning (ML) model for early childhood caries (ECC) prediction by identifying crucial health behaviours within mother-child pairs.

Methods: For the analysis, we utilized a representative sample of 724 mothers with children under six years in Bangladesh.

View Article and Find Full Text PDF

Vitiligo, alopecia areata, atopic, and stasis dermatitis are common skin conditions that pose diagnostic and assessment challenges. Skin image analysis is a promising noninvasive approach for objective and automated detection as well as quantitative assessment of skin diseases. This review provides a systematic literature search regarding the analysis of computer vision techniques applied to these benign skin conditions, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

View Article and Find Full Text PDF

Background: Early diagnosis of syphilis is vital for its effective control. This study aimed to develop an Artificial Intelligence (AI) diagnostic model based on radiomics technology to distinguish early syphilis from other clinical skin lesions.

Methods: The study collected 260 images of skin lesions caused by various skin infections, including 115 syphilis and 145 other infection types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!