AI Article Synopsis

  • Aquaporin-4 (AQP4) is a crucial protein involved in the glymphatic system, which facilitates fluid exchange in the brain and is linked to neurodegenerative diseases like Alzheimer's and frontotemporal dementia.
  • A study analyzed cerebrospinal fluid (CSF) samples from 103 patients with neurodegenerative dementias and found significantly higher AQP4 levels in these patients compared to controls.
  • There was also a positive correlation between AQP4 levels and total tau, suggesting that AQP4 could be important for understanding neurodegeneration and may lead to new clinical assessments related to brain health.

Article Abstract

Aquaporin-4 (AQP4) is a channel protein that plays a fundamental role in glymphatic system, a newly described pathway for fluid exchange in the central nervous system, as well as a central figure in a fascinating new theory for the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). In this study, cerebrospinal fluid (CSF) concentration of AQP4, amyloid-β, total tau and P-tau were determined in 103 CSF samples from patients affected by neurodegenerative dementias (AD and FTD) or psychiatric diseases and 21 controls. Significantly higher levels of AQP4 were found in AD and FTD patients compared to subjects not affected by neurodegenerative diseases, and a significant, positive correlation between AQP4 and total tau levels was found. This evidence may pave the way for future studies focused on the role of this channel protein in the clinical assessment of the glymphatic function and degree of neurodegeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482276PMC
http://dx.doi.org/10.1186/s13195-022-01077-6DOI Listing

Publication Analysis

Top Keywords

cerebrospinal fluid
8
glymphatic system
8
channel protein
8
neurodegenerative diseases
8
total tau
8
aquaporin-4 cerebrospinal
4
fluid levels
4
levels higher
4
neurodegenerative
4
higher neurodegenerative
4

Similar Publications

Variations in cerebral blood flow and blood volume interact with intracranial pressure and cerebrospinal fluid dynamics, all of which play a crucial role in brain homeostasis. A key physiological modulator is respiration, but its impact on cerebral blood flow and volume has not been thoroughly investigated. Here we used 4D flow MRI in a population-based sample of 65 participants (mean age = 75 ± 1) to quantify these effects.

View Article and Find Full Text PDF

Roots and early routes of neuroendocrinology.

Cell Tissue Res

January 2025

Departamento de Anatomía e Histología Humana, Facultad de Medicina, Universidad de Salamanca, Salamanca, Spain.

Carl C. Speidel (1919) and Ernst Scharrer (1928) were privileged witnesses of the encounter between neurons and hormones, a biological phenomenon that had been occurring in nature during millions of years of evolution, as Berta Scharrer started to unfold since 1935 on. The story of neurosecretion is intimately associated to that of the hypothalamus, such a "marvellous region", as Wolfgang Bargmann (1975) called it.

View Article and Find Full Text PDF

Background: Leptomeningeal dissemination (LMD) occurs when tumor cells interact with choroid plexus epithelium (CPE) to gain access to cerebrospinal fluid (CSF) in the brain's meninges and ventricular system. This disease is particularly devastating for patients due to our limited understanding and few therapeutic options. The leptomeningeal CSF is a nutritionally deprived microenvironment for tumor cells.

View Article and Find Full Text PDF

Peripheral neuropathy is a complication in systemic sclerosis that is occasionally encountered in clinical settings. The mechanisms underlying this condition remain unclear and treatment strategies have not yet been established, making management challenging. Here, we report a case of peripheral neuropathy associated with systemic sclerosis that was successfully treated with corticosteroid therapy despite the absence of conventional inflammatory findings on histopathology or blood tests.

View Article and Find Full Text PDF

Cortical Neurotransmitters Measured by Magnetic Resonance Spectroscopy Change Following Traumatic Brachial Plexus Injury.

J Brachial Plex Peripher Nerve Inj

January 2025

School of Health Sciences, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

 GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the brain. In response to injury within the central nervous system, GABA promotes cortical plasticity and represents a potential pharmacological target to improve functional recovery. However, it is unclear how GABA changes in the brain after traumatic brachial plexus injuries (tBPIs) which represents the rationale for this pilot study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!