Current and emerging immunotherapeutic approaches for biliary tract cancers.

Hepatobiliary Pancreat Dis Int

Department of Oncology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Navy Medical University), Shanghai 200438, China.

Published: October 2022

Background: Biliary tract cancers (BTCs) comprise a heterogeneous group of aggressive malignancies with unfavorable prognoses. The benefit of chemotherapy seems to have reached a bottleneck and, therefore, new effective therapeutic strategies for advanced BTCs are needed. Molecularly targeted therapies in selected patients are rapidly changing the situation. However, the low frequency of specific driver alterations in BTCs limits their wide application. Recently, immunotherapeutic approaches are also under active investigation in BTCs, but the role of immunotherapy in BTCs remains controversial.

Data Sources: PubMed, Web of Science, and meeting resources were searched for relevant articles published from January 2017 to May 2022. The search aimed to identify current and emerging immunotherapeutic approaches for BTCs. Information on clinical trials was obtained from https://clinicaltrials.gov/ and http://www.chictr.org.cn/.

Results: Immunotherapy in BTC patients is currently under investigation, and most of the investigations focused on the application of immune checkpoint inhibitors (ICIs). However, only a subgroup of BTCs with microsatellite-instability high (MSI-H)/DNA mismatch repair-deficient (dMMR) or tumor mutational burden-high (TMB-H) benefit from monotherapy of ICIs, and limited activity was observed in the second or subsequent settings. Nevertheless, promising results come from studies of ICIs in combination with other therapeutic approaches, including chemotherapy, in advanced BTCs, with a moderate toxicity profile. Recent studies demonstrated that compared to GEMCIS alone, durvalumab plus GEMCIS significantly improved patient survival (TOPAZ-1 trial) and that ICIs-combined chemoimmunotherapy is poised to become a new frontline therapy option, regardless of TMB and MMR/MSI status. Adoptive cell therapy and peptide- or dendritic-based cancer vaccines are other immunotherapeutic options that are being studied in BTCs. Numerous biomarkers have been investigated to define their predictive role in response to ICIs, but no predictive biomarker has been validated, except MSI-H/dMMR.

Conclusions: The role of immunotherapy in BTCs is currently under investigation and the results of ongoing studies are eagerly anticipated. Several studies have demonstrated the safety and efficacy of ICIs in combination with chemotherapy in treatment-naive patients, such as the phase III TOPAZ-1 trial, which will change the standard care of first-line chemotherapy for advanced BTCs. However, further research is needed to understand the best combination with immunotherapy and to discover more predictive biomarkers to guide clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hbpd.2022.08.015DOI Listing

Publication Analysis

Top Keywords

immunotherapeutic approaches
12
advanced btcs
12
btcs
11
current emerging
8
emerging immunotherapeutic
8
biliary tract
8
tract cancers
8
btcs needed
8
role immunotherapy
8
immunotherapy btcs
8

Similar Publications

In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15.

View Article and Find Full Text PDF

Inhibition of the adenosine 2A receptor (AR) is recognized as a promising immunotherapeutic strategy but is challenged by the ubiquity of AR function in the immune system. To develop a safe yet efficacious immunotherapy, the discovery of a novel negative allosteric modulator (NAM) was preferred. Leveraging an in-house, sensitive, high-throughput screening cellular assay, novel AR NAM scaffolds were identified, followed by an extensive structure-activity relationship (SAR) study, leading to the discovery of potent 2-amino-3,5-dicyanopyridine derivatives.

View Article and Find Full Text PDF

In situ vaccine "seeds" for enhancing cancer immunotherapy by exploiting apoptosis-associated morphological changes.

J Control Release

January 2025

School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, Henan Province, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou 450001, Henan Province, China. Electronic address:

Despite the development of many effective immunoadjuvants (IAs), the therapeutic efficacy of in situ vaccines for anti-tumor applications remains limited. Inspired by the morphological changes occurring during apoptosis, this study aims to leverage the release process of autologous tumor antigens (ATAs) to enhance the anti-tumor activity of in situ vaccines. We developed five distinct liposomes, each with unique characteristics and functions, incorporating FDA-approved monophosphoryl lipid A (MPLA) adjuvants into their lipid bilayers.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) poses a continual therapeutic challenge owing to its elevated incidence and unfavourable prognosis, underscoring the critical need for the discovery of new molecular targets for detection and therapy. This work included the analysis of three publically accessible HCC datasets from TCGA and GEO. Instrumental variables (IVs) were derived via expression quantitative trait loci (eQTL) analysis, then followed by two-sample Mendelian randomisation (MR) analysis utilising publically available summary statistics.

View Article and Find Full Text PDF

Chimeric Peptide Functionalized Immunostimulant to Orchestrate Photodynamic Immunotherapeutic Effect by PD-L1 Deglycosylation and CD47 Inhibition.

ACS Appl Mater Interfaces

January 2025

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.

Breast cancer utilizes diverse immunosuppressive mechanisms to evade immune surveillance, thereby impairing immunotherapeutic effects. In this work, a chimeric peptide functionalized immunostimulant (designated as aGlyR) is fabricated to boost photodynamic immunotherapy through PD-L1 deglycosylation and CD47 inhibition. The photosensitizer protoporphyrin IX (PpIX) is conjugated to a PD-L1 deglycosylation peptide via a hydrophilic PEG linker, yielding the chimeric peptide Fmoc-K(PpIX)-PEG-GFTATPPAPDSPQEP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!