Drought, as one of the most severe abiotic stresses in nature, adversely affects plant growth and development. Poplar is a woody plant which is prone to water-deficit sensitivity. Therefore, it is important to improve our understanding of how poplar responds to drought stress. Here, we cloned a gene from Populus tomentosa, namely PtoMPO1. PtoMPO1 encodes a DUF962 domain protein that is a homolog of yeast dioxygenase Mpo1 and Arabidopsis MHP1. The transcripts of PtoMPO1 were repressed by drought stress and ABA. Atmhp1-1 was a T-DNA insertion mutant lacking AtMHP1, and heteroexpression of PtoMPO1 in Atmhp1-1 significantly alleviated the sensitivity of Atmhp1-1 to ABA and NaCl, implying the functional replacement of PtoMPO1 to AtMHP1. PtoMPO1 overexpression decreased but PtoMPO1 mutation enhanced poplar drought tolerance. Furthermore, the expression of drought-related gene PtoRD26 is markedly lower in PtoMPO1-overexpressing plants and notably higher in Ptompo1 mutants compared to that in the wild type. Overall, these results suggested that PtoMPO1 functions as a novel negative mediator for drought tolerance in poplar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2022.09.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!