Nanotechnologies provide a great platform for researching nanoparticles effects on living organisms including plants. This work shows the stimulating effect of seed priming with gold nanoparticles (AuNPs) on photosynthetic apparatus of Triticum aestivum seedlings. It was found using inductively coupled plasma-atomic emission and mass spectrometry that AuNPs (the average diameter of 15.3 nm, concentration of 20 μg ml) penetrated into the seeds, but were not found in seedling leaves. Ultrastructural changes in chloroplasts were found using transmission electron microscopy in plants grown from treated seeds: increases in the size of plastids, starch grains, grana in chloroplasts, and the number of thylakoids in grana. The intensity of photosynthesis, the content of chlorophylls, and the portion of unsaturated fatty acids in the composition of total leaf lipids were increased in treated AuNPs plants. This study demonstrates that revealed changes determined the increased tolerance of wheat to low temperature. The adaptive significance of these changes, possible mechanisms of the AuNPs effects on plants and future perspectives of study are discussed. This is the first report showing nanopriming with AuNPs as a new method to study the mechanisms of stress tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2022.09.006DOI Listing

Publication Analysis

Top Keywords

priming gold
8
gold nanoparticles
8
photosynthetic apparatus
8
tolerance wheat
8
aunps
5
nanoparticles leads
4
changes
4
leads changes
4
changes photosynthetic
4
apparatus improves
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!