In this work, CPP-Ca chelate was synthesized by chelating casein phosphopeptide (CPP) and calcium and characterized by Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The antioxidant activity and calcium holding capacity of CPP-Ca were evaluated and its secondary structure transition was monitored during gastrointestinal digestion by in situ Raman spectroscopy. The results demonstrated that calcium chelating rate reached 40 % and calcium ion was bound to CPP mainly through the interaction of carboxyl and amino groups. The result of calcium holding capacity confirmed the formation of calcium phosphate precipitates could be delayed by 10-15 min with increasing CPP concentration. In vitro simulated digestion revealed CPP-Ca exhibited excellent calcium solubility and its secondary structural changes occurred, especially α-helix and β-sheet content. These findings provided significant insights into enhancing bioavailability of calcium supplements and developing of calcium functional foods for human and animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.134218 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!