Objective: A-kinase anchoring protein 5 (AKAP5) is involved in ventricular remodeling in rats with heart failure after myocardial infarction; however, the specific mechanism is not clear. This study investigated whether AKAP5 anchors calcineurin (CaN) to regulate the remodeling of H9c2 cardiomyocytes.

Methods: H9c2 cells were subjected to hypoxia stress for 3 h and reoxygenation for 24 h to create a hypoxia-reoxygenation (H/R) model. These cells were divided into three groups: H/R (model), empty vector +H/R (NC), and siRNA-AKAP5+H/R (siRNA-AKAP5) groups. The non-H/R H9c2 cells were used as normal controls. Western blotting was used to detect cardiac hypertrophy-related protein expression in the cells, including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta myosin heavy chain (β-MHC), and phosphorylated nuclear factor of activated T-cell 3 (p-NFATc3). Phalloidin staining was used to label the cytoskeleton and the cell area in different groups was measured. Immunofluorescence staining and coimmunoprecipitation were used to study the relationship between AKAP5 and CaN. H9c2 cells pretreated with the CaN inhibitor FK506 were used to further verify the relationship between AKAP5 and CaN.

Results: In the siRNA-AKAP5+H/R group, the expression level of cardiac hypertrophy-related proteins (ANP, BNP, and β-MHC) and CaN and the area of cardiomyocytes were significantly increased, while the p-NFATc3/NFATc3 ratio was decreased in H9c2H/R cells. AKAP5 and CaN proteins were colocalized and interacted in the cells. The CaN inhibitor significantly suppressed the expression of CaN, increased the p-NFATc3/NFATc3 ratio, and reduced the expression levels of ANP, BNP, and β-MHC proteins in the cells with low AKAP5 expression.

Conclusions: AKAP5 downregulation aggravated the remodeling of cardiomyocytes after H/R. AKAP5 may anchor CaN to form a complex, which in turn activates NFATc3 dephosphorylation and expression of hypertrophy-related proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2022.113689DOI Listing

Publication Analysis

Top Keywords

h9c2 cells
12
a-kinase anchoring
8
anchoring protein
8
remodeling h9c2
8
akap5
8
cells
8
h/r model
8
cardiac hypertrophy-related
8
natriuretic peptide
8
relationship akap5
8

Similar Publications

Introduction: Taohong Siwu decoction (THSWD), a traditional prescription for enhancing blood circulation and eliminating blood stasis, primarily comprises peach kernel, safflower, angelica, chuanxiong, and rehmannia. Modified Taohong Siwu decoction (MTHSWD), an advanced version of THSWD, incorporates additional ingredients such as epimedium, cinnamon, and salvia miltiorrhiza. This addition serves to augment its efficacy in warming yang and promoting blood circulation.

View Article and Find Full Text PDF

Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.

View Article and Find Full Text PDF

Background: By far, one of the best treatments for myocardial ischemia is reperfusion therapy. The primary liposoluble component of Danshen, a traditional Chinese herbal remedy, Tanshinone ⅡA, has been shown to have cardiac healing properties. The purpose of this work is to investigate the processes by which Tanshinone ⅡA influences myocardial ischemia-reperfusion injury (MIRI) in the H9C2 cardiac myoblast cell line, as well as the association between Tanshinone ⅡA and MIRI.

View Article and Find Full Text PDF

We investigated whether miR143#12, a synthesized chemically modified miR-143-3p derivative, exerts therapeutic effects on acute myocardial infarction (AMI). Sprague-Dawley rats and Japanese white rabbits underwent 30 min of coronary occlusion followed by 2 weeks of reperfusion. The rat AMI model was intravenously administered with control miRNA (9 μg/kg), 3 μg/kg or 9 μg/kg of miR143#12 1 h after reperfusion, while the rabbit AMI model was intravenously administered with control miRNA (9 μg/kg) or 9 μg/kg of miR143#12.

View Article and Find Full Text PDF

Red millet yellow wine, a functional beverage fermented from grain, has physiological functions including relieving cardiovascular diseases. However, the active components and mechanism of red millet yellow wine largely remain to be elucidated. In this study, bioactive peptides in red millet yellow wine and the cardiac cytoprotective effects were first investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!