Combined HASPIN and mTOR inhibition is synergistic against KRAS-driven carcinomas.

Transl Oncol

Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China. Electronic address:

Published: December 2022

Background: Oncogenic mutations in the KRAS gene are very common in human cancers, resulting in cells with well-characterized selective advantages. For more than three decades, the development of effective therapeutics to inhibit KRAS-driven tumorigenesis has proved a formidable challenge and KRAS was considered 'undruggable'. Therefore, multi-targeted therapy may provide a reasonable strategy for the effective treatment of KRAS-driven cancers. Here, we assess the efficacy and mechanistic rationale for combining HASPIN and mTOR inhibition as a potential therapy for cancers carrying KRAS mutations.

Methods: We investigated the synergistic effect of a combination of mTOR and HASPIN inhibitors on cell viability, cell cycle, cell apoptosis, DNA damage, and mitotic catastrophe using a panel of human KRAS-mutant and wild-type tumor cell lines. Subsequently, the human transplant models were used to test the therapeutic efficacy and pharmacodynamic effects of the dual therapy.

Results: We demonstrated that the combination of mTOR and HASPIN inhibitors induced potent synergistic cytotoxic effects in KRAS-mutant cell lines and delayed the growth of human tumor xenograft. Mechanistically, we showed that inhibiting of mTOR potentiates HASPIN inhibition by preventing the phosphorylation of H3 histones, exacerbating mitotic catastrophe and DNA damage in tumor cell lines with KRAS mutations, and this effect is due in part to a reduction in VRK1.

Conclusions: These findings indicate that increased DNA damage and mitotic catastrophe are the basis for the effective synergistic effect observed with mTOR and HASPIN inhibition, and support the clinical evaluation of this dual therapy in patients with KRAS-mutant tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9483799PMC
http://dx.doi.org/10.1016/j.tranon.2022.101540DOI Listing

Publication Analysis

Top Keywords

mtor haspin
12
dna damage
12
mitotic catastrophe
12
cell lines
12
haspin mtor
8
mtor inhibition
8
combination mtor
8
haspin inhibitors
8
damage mitotic
8
tumor cell
8

Similar Publications

Combined HASPIN and mTOR inhibition is synergistic against KRAS-driven carcinomas.

Transl Oncol

December 2022

Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China. Electronic address:

Background: Oncogenic mutations in the KRAS gene are very common in human cancers, resulting in cells with well-characterized selective advantages. For more than three decades, the development of effective therapeutics to inhibit KRAS-driven tumorigenesis has proved a formidable challenge and KRAS was considered 'undruggable'. Therefore, multi-targeted therapy may provide a reasonable strategy for the effective treatment of KRAS-driven cancers.

View Article and Find Full Text PDF

Although substantial progress has been made regarding the use of molecularly targeted cancer therapies, resistance almost invariably develops and presents a major clinical challenge. The tumor microenvironment can rescue cancer cells from kinase inhibitors by growth-factor-mediated induction of pro-survival pathways. Here we show that epidermal growth factor receptor (EGFR) inhibition by Gefitinib is counteracted by growth factors, notably FGF2, and we assessed the global molecular consequences of this resistance at the proteome and phosphoproteome level in A431 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!