Objective: The profound immunosuppression found in glioblastoma (GBM) patients is a critical barrier to effective immunotherapy. Multiple mechanisms of tumor-mediated immune suppression exist, and the induction of immunosuppressive monocytes such as myeloid-derived suppressor cells (MDSCs) is increasingly appreciated as a key part of this pathology. GBM-derived extracellular vesicles (EVs) can induce the formation of MDSCs. The authors sought to identify the molecular consequences of these interactions in myeloid cells in order to identify potential targets that could pharmacologically disrupt GBM EV-monocyte interaction as a means to ameliorate tumor-mediated immune suppression. Heparin-sulfate proteoglycans (HSPGs) are a general mechanism by which EVs come into association with their target cells, and soluble heparin has been shown to interfere with EV-HSPG interactions. The authors sought to assess the efficacy of heparin treatment for mitigating the effects of GBM EVs on the formation of MDSCs.
Methods: GBM EVs were collected from patient-derived cell line cultures via staged ultracentrifugation and cocultured with monocytes collected from apheresis cones from healthy blood donors. RNA was isolated from EV-conditioned and unconditioned monocytes after 72 hours of coculture, and RNA-sequencing analysis performed. For the heparin treatment studies, soluble heparin was added at the time of EV-monocyte coculture and flow cytometry analysis was performed 72 hours later. After the initial EV-monocyte coculture period, donor-matched T-cell coculture studies were performed by adding fluorescently labeled and stimulated T cells for 5 days of coculture.
Results: Transcriptomic analysis of GBM EV-treated monocytes demonstrated downregulation of several important immunological and metabolic pathways, with upregulation of the pathways associated with synthesis of cholesterol and HSPG. Heparin treatment inhibited association between GBM EVs and monocytes in a dose-dependent fashion, which resulted in a concomitant reduction in MDSC formation (p < 0.01). The authors further demonstrated that reduced MDSC formation resulted in a partial rescue of immune suppression, as measured by effects on activated donor-matched T cells (p < 0.05).
Conclusions: The authors demonstrated that GBM EVs induce broad but reproducible reprogramming in monocytes, with enrichment of pathways that may portend an immunosuppressive phenotype. The authors further demonstrated that GBM EV-monocyte interactions are potentially druggable targets for overcoming tumor-mediated immune suppression, with heparin inhibition of EV-monocyte interactions demonstrating proof of principle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/2022.6.JNS2274 | DOI Listing |
J Periodontal Res
January 2025
Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.
Aim: To investigate additional factors contributing to the pathophysiology of chemotherapy-induced oral mucositis and periodontitis beyond the systemic immune suppression caused by the chemotherapeutic agent 5-Fluorouracil (5-FU).
Methods: 5-Fluorouracil was topically delivered to the non-keratinized, rapidly proliferating junctional epithelium (JE) surrounding the dentition, and acts as an immunologic and functional barrier to bacterial ingression. Various techniques, including EdU incorporation, quantitative immunohistochemistry (qIHC), histology, enzymatic activity assays, and micro-computed tomographic (μCT) imaging, were employed to analyze the JE at multiple time points following topical 5-FU treatment.
Mol Cancer
January 2025
Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China.
As research progresses, our understanding of the tumor microenvironment (TME) has undergone profound changes. The TME evolves with the developmental stages of cancer and the implementation of therapeutic interventions, transitioning from an immune-promoting to an immunosuppressive microenvironment. Consequently, we focus intently on the significant role of the TME in tumor proliferation, metastasis, and the development of drug resistance.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Haematology, Oslo University Hospital, P.O. Box 4950, Oslo, 0424, Norway.
Whether the fat-soluble vitamins A, D, E, and K are associated with development of graft-versus-host disease (GvHD) after allogeneic stem cell transplantation, is unclear. We assessed if the levels of these vitamins were associated with development of GvHD during the first year after transplantation using data from a two-armed randomized nutritional intervention trial. Changes in plasma levels during 1-year follow-up were analyzed using a linear mixed model for repeated measurements.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
January 2025
Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
Background: Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular junctions, leading to fluctuating muscle weakness. While many patients respond well to standard immunosuppression, a substantial subgroup faces ongoing disease activity. Emerging treatments such as complement factor C5 inhibition (C5IT) and neonatal Fc receptor (FcRn) antagonism hold promise for these patients.
View Article and Find Full Text PDFDev Comp Immunol
January 2025
Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea. Electronic address:
Host cabbage possesses an endophyte, Bacillus subtilis, which induced immune-priming of the diamondback moth, Plutella xylostella. In contrast, larvae raised under axenic conditions lost the chance to feed the bacteria and were highly susceptible to various pathogens. Addition of B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!