This protocol outlines a translational lipidomic approach to discover lipid biomarkers that could predict morphometric body and histological organ measurements (e.g., weight and adiposity gains) during specific stages of life (e.g., early life). We describe procedures ranging from animal experimentation and histological analyses to downstream analytical steps through lipid profiling, both in mice and humans. This protocol represents a reliable and versatile approach to translate and validate candidate lipid biomarkers from animal models to a human cohort. For complete details on the use and execution of this protocol, please refer to Olga et al. (2021).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9486117 | PMC |
http://dx.doi.org/10.1016/j.xpro.2022.101679 | DOI Listing |
Hepatol Int
January 2025
Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
Background/purpose: Although metabolic dysfunction-associated steatotic liver disease (MASLD) has been proposed to replace the diagnosis of non-alcoholic fatty liver disease (NAFLD) with new diagnostic criteria since 2023, the genetic predisposition of MASLD remains to be explored.
Methods: Participants with data of genome-wide association studies (GWAS) in the Taiwan Biobank database were collected. Patients with missing data, positive for HBsAg, anti-HCV, and alcohol drinking history were excluded.
Commun Biol
January 2025
Division of Geriatrics, Department of Medicine, SMPH, University of Wisconsin-Madison, Madison, WI, USA.
Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
One of the key hallmarks of Parkinson's disease is the disruption of lipid homeostasis in the brain, which plays a critical role in neuronal membrane integrity and function. Understanding how treadmill training impacts lipid restructuring and its subsequent influence on motor function could provide a basis for developing targeted non-pharmacological interventions for individuals living with early stage of PD. This study aims to investigate the effects of a treadmill training intervention on motor deficits induced by 6-OHDA in rats model of PD.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
The chloroform extract of leaves of L, reduced the levels of lipid profile in rats with hypercholesterolaemia to near-normal levels. Additionally, it significantly decreased the amount of malondialdehyde (MDA). In addition, the extract augmented the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) in the hypercholesterolemic treated rats.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
Background: The potential therapeutic role of magnesium (Mg) in type 2 diabetes mellitus (T2DM) remains insufficiently studied despite its known involvement in critical processes like lipid metabolism and insulin sensitivity. This study examines the impact of Mg-focused nutritional education on lipid profile parameters, total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in T2DM patients.
Methods: Thirty participants with T2DM were recruited for this within-subject experimental study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!