Direct Observation of "Elongated" Conformational States in α-Synuclein upon Liquid-Liquid Phase Separation.

Angew Chem Int Ed Engl

Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle/Saale, Germany.

Published: November 2022

α-Synuclein (α-syn) is an intrinsically disordered protein (IDP) that undergoes liquid-liquid phase separation (LLPS), fibrillation, and forms insoluble intracellular Lewy bodies in neurons, which are the hallmark of Parkinson's Disease (PD). Neurotoxicity precedes the formation of aggregates and might be related to α-syn LLPS. The molecular mechanisms underlying the early stages of LLPS are still elusive. To obtain structural insights into α-syn upon LLPS, we take advantage of cross-linking/mass spectrometry (XL-MS) and introduce an innovative approach, termed COMPASS (COMPetitive PAiring StatisticS). In this work, we show that the conformational ensemble of α-syn shifts from a "hairpin-like" structure towards more "elongated" conformational states upon LLPS. We obtain insights into the critical initial stages of LLPS and establish a novel mass spectrometry-based approach that will aid to solve open questions in LLPS structural biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828221PMC
http://dx.doi.org/10.1002/anie.202205726DOI Listing

Publication Analysis

Top Keywords

"elongated" conformational
8
conformational states
8
liquid-liquid phase
8
phase separation
8
α-syn llps
8
stages llps
8
llps
7
direct observation
4
observation "elongated"
4
states α-synuclein
4

Similar Publications

Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin's tail domain to actin filaments (AFs) by steric hindrance through its large nestin tail domain (NTD), thereby increasing three-dimensional cytoskeleton network mobility, enhancing cell flexibility, and promoting cancer progression.

View Article and Find Full Text PDF

Antarctic Krill Protein Amyloid Fibrils as a Novel Iron Carrier for the Improvement of Iron Deficiency.

J Agric Food Chem

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

Iron fortification with food supplements remains the primary dietary strategy for improving iron deficiency anemia (IDA). This study used Antarctic krill protein for fibrillar design to form an Antarctic krill protein amyloid fibril (AKAF). The results indicated that peptides generated by proteolysis were a prerequisite for fibril assembly, forming elongated fibril structures and cross-linking upon heating.

View Article and Find Full Text PDF

A comprehensive approach enabling a quantitative interpretation of poly-l-arginine (PARG) adsorption kinetics at solid/electrolyte interfaces was developed. The first step involved all-atom molecular dynamics (MD) modeling of physicochemical characteristics yielding PARG molecule conformations, its contour length, and the cross-section area. It was also shown that PARG molecules, even in concentrated electrolyte solutions (100 mM NaCl), assume a largely elongated shape with an aspect ratio of 36.

View Article and Find Full Text PDF

Insulin amyloid morphology is encoded in H-bonds and electrostatics interactions ruling protein phase separation.

J Colloid Interface Sci

December 2024

Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:

Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.

View Article and Find Full Text PDF

DUO1 Activated Zinc Finger (AtDAZ) protein role in the generative cell body morphogenesis.

Plant Mol Biol

January 2025

National Key Laboratory for Tropical Crop Breeding, Tropical Crop Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Haikou, 572024/571101, Hainan, China.

Arabidopsis MYB transcription factor, AtDUO1 regulates generative cell body (GC) morphogenesis from round to semi and fully elongated forms before pollen mitosis-II (PM II). It was hypothesised that DUO1 might regulate morphogenesis through any of its direct target genes or components of the DUO1-DAZ1 network. The developmental analysis of plants harbouring T-DNA insertions in some DUO1 target genes using light and fluorescence microscopy revealed abnormal GC morphogenesis only in daz1 and daz2, but gcs1, trm16, mapkkk10, mapkkk20, tet11, and tip1 all undergo normal elongation indicating that these target genes have no important roles in morphogenesis or may be redundant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!