Objective: To qualitatively and quantitatively assess integrated segmentation of three convolutional neural network (CNN) models for the creation of a maxillary virtual patient (MVP) from cone-beam computed tomography (CBCT) images.

Materials And Methods: A dataset of 40 CBCT scans acquired with different scanning parameters was selected. Three previously validated individual CNN models were integrated to achieve a combined segmentation of maxillary complex, maxillary sinuses, and upper dentition. Two experts performed a qualitative assessment, scoring-integrated segmentations from 0 to 10 based on the number of required refinements. Furthermore, experts executed refinements, allowing performance comparison between integrated automated segmentation (AS) and refined segmentation (RS) models. Inter-observer consistency of the refinements and the time needed to create a full-resolution automatic segmentation were calculated.

Results: From the dataset, 85% scored 7-10, and 15% were within 3-6. The average time required for automated segmentation was 1.7 min. Performance metrics indicated an excellent overlap between automatic and refined segmentation with a dice similarity coefficient (DSC) of 99.3%. High inter-observer consistency of refinements was observed, with a 95% Hausdorff distance (HD) of 0.045 mm.

Conclusion: The integrated CNN models proved to be fast, accurate, and consistent along with a strong interobserver consistency in creating the MVP.

Clinical Relevance: The automated segmentation of these structures simultaneously could act as a valuable tool in clinical orthodontics, implant rehabilitation, and any oral or maxillofacial surgical procedures, where visualization of MVP and its relationship with surrounding structures is a necessity for reaching an accurate diagnosis and patient-specific treatment planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9985582PMC
http://dx.doi.org/10.1007/s00784-022-04708-2DOI Listing

Publication Analysis

Top Keywords

cnn models
12
automated segmentation
12
segmentation
9
maxillary virtual
8
virtual patient
8
convolutional neural
8
cone-beam computed
8
computed tomography
8
refined segmentation
8
inter-observer consistency
8

Similar Publications

Background: The subcellular localization of mRNA plays a crucial role in gene expression regulation and various cellular processes. However, existing wet lab techniques like RNA-FISH are usually time-consuming, labor-intensive, and limited to specific tissue types. Researchers have developed several computational methods to predict mRNA subcellular localization to address this.

View Article and Find Full Text PDF

Social media generates vast amounts of spatio-temporal sequential data. However, current methods often ignore the complex spatio-temporal correlations within these data. This oversight makes it difficult to fully capture the dynamic features of the data.

View Article and Find Full Text PDF

This paper presents a deep learning model based on an active learning strategy. The model achieves accurate identification of vegetation types in the study area by utilizing multispectral data obtained from preprocessing of unmanned aerial vehicle (UAV) remote sensing equipment. This approach offers advantages such as high data accuracy, mobility, and easy data collection.

View Article and Find Full Text PDF

Human activity recognition (HAR) is one of the most important segments of technology advancement in applications of smart devices, healthcare systems & fitness. HAR uses details from wearable sensors that capture the way human beings move or engage with their surrounding. Several researchers have thus presented different ways of modeling human motion, and some have been as follows: Many researchers have presented different methods of modeling human movements.

View Article and Find Full Text PDF

A new prediction model based on deep learning for pig house environment.

Sci Rep

December 2024

School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar, 161006, China.

A prediction model of the pig house environment based on Bayesian optimization (BO), squeeze and excitation block (SE), convolutional neural network (CNN) and gated recurrent unit (GRU) is proposed to improve the prediction accuracy and animal welfare and take control measures in advance. To ensure the optimal model configuration, the model uses a BO algorithm to fine-tune hyper-parameters, such as the number of GRUs, initial learning rate and L2 normal form regularization factor. The environmental data are fed into the SE-CNN block, which extracts the local features of the data through convolutional operations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!