As the ground-based instruments for measuring net radiation are costly and need to be handled skillfully, the net radiation data at spatial and temporal scales over Indian subcontinent are scanty. Sometimes, it is necessary to use other meteorological parameters to estimate the value of net radiation, although the prediction may vary based on season, ground cover and estimation method. In this context, artificial intelligence can be used as a powerful tool for predicting the data considering past observed data. This paper proposes a novel method to predict the net radiation for five crop surfaces using global solar radiation and canopy temperature. This contribution includes the generation of real-time data for five crops grown in West Bengal state of India. After manual analysis and data preprocessing, data normalization has been done before applying machine learning approaches for training a robust model. We have presented the comparison in various machine learning algorithm such as ridge and spline regression, random forest, ensemble and deep neural networks. The result shows that the gradient boosting regression and ridge regression are outperforming other ML approaches. The estimated predictors enable to reduce the number of resources in terms of time, cost and manpower for proper net radiation estimation. Thus, the problem of predicting net radiation over various crop surfaces can be sorted out through ML algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00484-022-02364-5DOI Listing

Publication Analysis

Top Keywords

net radiation
28
machine learning
12
radiation crop
12
crop surfaces
12
radiation
9
predict net
8
surfaces global
8
global solar
8
solar radiation
8
radiation canopy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!