A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Suppression of intrahepatic cholangiocarcinoma cell growth by SKI via upregulation of the CDK inhibitor p21. | LitMetric

AI Article Synopsis

  • Cholangiocarcinoma (CC) is a severe form of liver cancer with poor outcomes, necessitating new treatment strategies and understanding of its underlying genetic causes.
  • This study identified a specific microRNA, miRNA-3648, that affects the expression of the tumor suppressor gene SKI, which is linked to tumor growth in CC.
  • By manipulating SKI levels in cancer cells, researchers found that increasing SKI can halt cell proliferation and trigger cell cycle arrests, suggesting that targeting SKI could be a promising approach for treating intrahepatic CC.

Article Abstract

Cholangiocarcinoma (CC) has a poor prognosis and different driver genes depending on the site of onset. Intrahepatic CC is the second-most common liver cancer after hepatocellular carcinoma, and novel therapeutic targets are urgently needed. The present study was conducted to identify novel therapeutic targets by exploring differentially regulated genes in human CC. MicroRNA (miRNA) and mRNA microarrays were performed using tissue and serum samples obtained from 24 surgically resected hepatobiliary tumor cases, including 10 CC cases. We conducted principal component analysis to identify differentially expressed miRNA, leading to the identification of miRNA-3648 as a differentially expressed miRNA. We used an in silico screening approach to identify its target mRNA, the tumor suppressor Sloan Kettering Institute (SKI). SKI protein expression was decreased in human CC cells overexpressing miRNA-3648, endogenous SKI protein expression was decreased in human CC tumor tissues, and endogenous SKI mRNA expression was suppressed in human CC cells characterized by rapid growth. SKI-overexpressing OZ cells (human intrahepatic CC cells) showed upregulation of cyclin-dependent kinase inhibitor p21 mRNA and protein expression and suppressed cell proliferation. Nuclear expression of CDT1 (chromatin licensing and DNA replication factor 1), which is required for the G1/S transition, was suppressed in SKI-overexpressing OZ cells. SKI knockdown resulted in the opposite effects. Transgenic p21-luciferase was activated in SKI-overexpressing OZ cells. These data indicate SKI involvement in p21 transcription and that SKI-p21 signaling causes cell cycle arrest in G1, suppressing intrahepatic CC cell growth. Therefore, SKI may be a potential therapeutic target for intrahepatic CC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9714377PMC
http://dx.doi.org/10.1002/2211-5463.13489DOI Listing

Publication Analysis

Top Keywords

protein expression
12
ski-overexpressing cells
12
cell growth
8
ski
8
growth ski
8
inhibitor p21
8
novel therapeutic
8
therapeutic targets
8
differentially expressed
8
expressed mirna
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!