Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It has been proposed that 3,4-dihydroxy-L-phenylalanine (DOPA) has antioxidant properties, and thus, the objective of this work was to evaluate the effect of adding DOPA during the photosensitized oxidation of tyrosine (Tyr), tryptophan (Trp), histidine (His), 2'-deoxyguanosine 5'-monophosphate (dGMP) and 2'-deoxyadenosine 5'-monophosphate (dAMP). It was observed that, upon pterin-photosensitized degradation of a given biomolecule in acidic aqueous solutions, the rate of the biomolecule consumption decreases due to the presence of DOPA. Although DOPA deactivates the excited states of pterin (Ptr), biomolecules do as well, being the bimolecular quenching constants in the diffusional control limit, indicating that DOPA antioxidant mechanism is not a simple deactivation of Ptr excited states. Laser flash photolysis experiments provide evidence of the formation of DOPA radical (DOPA(-H) , λ 310 nm), which is formed in a timescale longer than Ptr triplet excited state ( Ptr*) lifetime, ruling out its formation in a reaction between DOPA and Ptr*. The experimental results presented in this work indicate that the observed decrease on the rate of each biomolecule consumption due to the presence of DOPA is through a second one-electron transfer reaction from DOPA to the biomolecule radicals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/php.13718 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!