Ageing is a biological process that is linked to a functional decline, ultimately resulting in death. Large interindividual differences exist in terms of life- and healthspan, representing life expectancy and the number of years spent in the absence of major diseases, respectively. The genetic and molecular mechanisms that are involved in the regulation of the ageing process, and those that render age the main risk factor for many diseases are still poorly understood. Nevertheless, a growing number of compounds have been put forward to affect this process. However, for scientists and laypeople alike, it is difficult to separate fact from fiction, and hype from hope. In this review, we discuss the currently pursued pharmacological anti-ageing approaches. These are compared to non-pharmacological interventions, some of which confer powerful effects on health and well-being, in particular an active lifestyle and exercise. Moreover, functional parameters and biological clocks as well as other molecular marks are compared in terms of predictive power of morbidity and mortality. Then, conceptual aspects and roadblocks in the development of anti-ageing drugs are outlined. Finally, an overview on current and future strategies to mitigate age-related pathologies and the extension of life- and healthspan is provided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1113/JP282887 | DOI Listing |
Head Neck
January 2025
Department of Pathology, All India Institute of Medical Sciences, Rishikesh, India.
Background: To correlate between immunohistochemical expression of tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and natural killer (NK) cells with the AJCC 8th edition TNM staging system and other disease-modifying clinico-pathological variables.
Methods: The representative histology sections of tumor invasive margin (IM) and tumor core (TC) were selected according to the International Immuno-Oncology Biomarker Working Group and were subjected to immunohistochemistry with antibodies for TILs (CD3, CD8, FOXP3), NK Cells (CD57), TAMs (CD68, CD163) and pan-leukocyte marker (CD45). Histo-immuno-density-intensity (HIDI) scoring was calculated as a product of the proportion and intensity of staining.
Expert Opin Drug Discov
January 2025
Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY, USA.
Introduction: Technological advancements in virtual screening (VS) have rapidly accelerated its application in drug discovery, as reflected by the exponential growth in VS-related publications. However, a significant gap remains between the volume of computational predictions and their experimental validation. This discrepancy has led to a rise in the number of unverified 'claimed' hits which impedes the drug discovery efforts.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning.
View Article and Find Full Text PDFEndocr Pract
January 2025
Division of Endocrinology, Diabetes and Metabolism, Tufts Medical Center, Boston, MA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!