Uncoupling protein-3 (UCP3) is a mitochondrial transmembrane protein highly expressed in the muscle that has been implicated in regulating the efficiency of mitochondrial oxidative phosphorylation. Increasing UCP3 expression in skeletal muscle enhances proton leak across the inner mitochondrial membrane and increases oxygen consumption in isolated mitochondria, but its precise function in vivo has yet to be fully elucidated. To examine whether muscle-specific overexpression of UCP3 modulates muscle mitochondrial oxidation in vivo, rates of ATP synthesis were assessed by P magnetic resonance spectroscopy (MRS), and rates of mitochondrial oxidative metabolism were measured by assessing the rate of [2- C]acetate incorporation into muscle [4- C]-, [3- C]-glutamate, and [4- C]-glutamine by high-resolution C/ H MRS. Using this approach, we found that the overexpression of UCP3 in skeletal muscle was accompanied by increased muscle mitochondrial inefficiency in vivo as reflected by a 42% reduction in the ratio of ATP synthesis to mitochondrial oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.14494DOI Listing

Publication Analysis

Top Keywords

overexpression ucp3
12
skeletal muscle
12
mitochondrial
8
mitochondrial oxidative
8
muscle mitochondrial
8
mitochondrial oxidation
8
atp synthesis
8
muscle
7
ucp3 decreases
4
decreases mitochondrial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!