Objective: Chronic liver diseases often involve metabolic damage to the skeletal system. The underlying mechanism of bone loss in chronic liver diseases remains unclear, and appropriate therapeutic options, except for orthotopic liver transplantation, have proved insufficient for these patients. This study aimed to investigate the efficacy and mechanism of transplantation of immature hepatocyte-like cells converted from stem cells from human exfoliated deciduous teeth (SHED-Heps) in bone loss of chronic liver fibrosis.
Methods: Mice that were chronically treated with CCl received SHED-Heps, and trabecular bone density, reactive oxygen species (ROS), and osteoclast activity were subsequently analyzed in vivo and in vitro. The effects of stanniocalcin 1 (STC1) knockdown in SHED-Heps were also evaluated in chronically CCl treated mice.
Results: SHED-Hep transplantation (SHED-HepTx) improved trabecular bone loss and liver fibrosis in chronic CCl-treated mice. SHED-HepTx reduced hepatic ROS production and interleukin 17 (Il-17) expression under chronic CCl damage. SHED-HepTx reduced the expression of both Il-17 and tumor necrosis factor receptor superfamily 11A (Tnfrsf11a) and ameliorated the imbalance of osteoclast and osteoblast activities in the bone marrow of CCl-treated mice. Functional knockdown of STC1 in SHED-Heps attenuated the benefit of SHED-HepTx including anti-bone loss effect by suppressing osteoclast differentiation through TNFSF11-TNFRSF11A signaling and enhancing osteoblast differentiation in the bone marrow, as well as anti-fibrotic and anti-ROS effects in the CCl-injured livers.
Conclusions: These findings suggest that targeting hepatic ROS provides a novel approach to treat bone loss resulting from chronic liver diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515604 | PMC |
http://dx.doi.org/10.1016/j.molmet.2022.101599 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!