The β-galactosidase was extracted and purified from 100 g of C. arvensis seeds using a variety of protein purification procedures such as ammonium sulphate fractionation, gel filtration, and finally chromatography on a cationic ion exchanger. The effects of metal ions, kinetics parameters, and glycoprotein nature were determined, as well as the optimal pH and temperature of the purified enzyme. With a high specific activity (72 units/mg), β-galactosidase was isolated to a 24-fold apparent electrophoretic homogeneity. The molecular mass of β-galactosidase was determined as monomeric, which was further confirmed by SDS-PAGE and MALDI-TOF/MS analysis, with a 45 kDa molecular weight. The enzyme has a K of 0.33 mM and a V of 42 μmol/min Lactose in milk was reduced by 38.5 and 70 % after 4 h of incubation with β-galactosidase from C. arvensis. The β-galactosidase thermal inactivation kinetic parameters ΔH°, ΔS°, and ΔG° were calculated, indicating that the enzyme undergoes significant unfolding events during denaturation. Using β-galactosidase from C. arvensis seeds, lactose hydrolysis in milk up to approx. 50 % was observed. The findings indicate the potential use of C. arvensis seeds for the production of low/delactosed milk for lactose-intolerant population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.09.107 | DOI Listing |
Plant Biol (Stuttg)
December 2024
Laboratory of Entomology, Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands.
Plants can sustain various degrees of damage or compensate for tissue loss by regrowth without significant fitness costs. This tolerance to insect herbivory depends on the plant's developmental stage during which the damage is inflicted and on how much tissue is removed. Plant fitness correlates, that is, biomass and germination of seeds, were determined at different ontogenetic stages, vegetative, budding, or flowering stages of three annual brassicaceous species exposed to feeding by Pieris brassicae caterpillars at different intensities.
View Article and Find Full Text PDFPlant Dis
September 2024
Institute for Plant Protection and Environment, Department of Plant Pathology, Teodora Drajzera 9, Belgrade, Serbia, 11000;
Alternaria pathogens are a global agronomic challenge affecting the health of Solanaceae crops. Crop debris, seeds, and perennial weeds are potential inoculum reservoirs, but knowledge on their relative importance remains limited. Plants of Convolvulus arvensis showing early blight and brown leaf spot symptoms were collected from in and around potato and tomato fields in Serbia, grown both in open conditions and in tunnels, in the late season of 2021 - 2022.
View Article and Find Full Text PDFJ Tradit Chin Med
August 2024
Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
Int J Biol Macromol
October 2024
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia.
The purple acid phosphatase was purified from 5.9-fold to apparent homogeneity from Anagelis arvensis seeds using SP-Sephadex C-50 and Sephadex G-100 chromatography. The results of residual activity tests conducted using different temperature ranges (50-70 °C) were calculated as the activation energy (E = 72 kJ/mol), enthalpy (69.
View Article and Find Full Text PDFFront Nutr
April 2024
Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany.
Background: Ahiflower oil from the seeds of is rich in α-linolenic acid (ALA) and stearidonic acid (SDA). ALA and SDA are potential precursor fatty acids for the endogenous synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are n3-long chain polyunsaturated fatty acids (n3-LC-PUFAS), in humans. Since taurine, an amino sulfonic acid, is often associated with tissues rich in n3-LC-PUFAS (e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!