Skeletal muscle transforming growth factor-β-activated kinase 1 (TAK1) continuous excessive phosphorylation was observed in Duchenne muscular dystrophy (DMD) patients and mdx mice. Inhibiting TAK1 phosphorylation ameliorated fibrosis and muscular atrophy, while TAK1 knockout also impaired muscle regeneration. The definite effect and mechanism of p-TAK1 in muscle regeneration disorder is still obscure. In this study, BaCl-induced acute muscle injury model was used to investigate the role of p-TAK1 in myoblast proliferation and differentiation phase. The results showed that TAK1 phosphorylation was significantly up-regulated in proliferation phase along with Keap1/Nrf2/HO-1 signaling pathway activation, which was down-regulated in differentiation phase yet. In C2C12 cells, inhibiting TAK1 phosphorylation markedly suppressed the expression of heme oxygenase-1 (HO-1), and both myoblast proliferation and differentiation were inhibited. As for activation, p-TAK1 promoted myoblast proliferation via up-regulating HO-1 level. However, excessive TAK1 phosphorylation (induced by 20 ng·mL TGF-β1) notably up-regulated HO-1 expression, inhibiting myogenic differentiation antigen (MyOD) and myogenic differentiation. A mild p-TAK1 level (induced by 5 or 10 ng·mL TGF-β1) was beneficial for myoblast differentiation. In mdx mice, robust myoblast proliferation and differentiation arrest were observed with high p-TAK1 level in skeletal muscle. HO-1 expression was significantly up-regulated. TAK1 phosphorylation inhibitor NG25 (N-[4-[(4-ethylpiperazin-1-yl)methyl]-3-(trifluoromethyl)phenyl]-4-methyl-3-(1H-pyrrolo[2,3-b]pyridin-4-yloxy)benzamide) significantly inhibited HO-1 expression, relieved excessive myoblast proliferation and differentiation arrest, promoted new myofiber formation, and eventually improved muscle function. In conclusion, p-TAK1 acted as "a switch" between proliferation and differentiation phase. Mitigating p-TAK1 level transformed myoblast excessive proliferation phase into differentiation phase in mdx mouse via regulating HO-1 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2022.175277 | DOI Listing |
Biofabrication
March 2025
Institute of Zoology Chinese Academy of Sciences, Beichen West Road, Chaoyang District, Beijing 100101, P.R.China, Chaoyang District, 100101, CHINA.
The growth and formation of tissues, such as skeletal muscle, involve a complex interplay of spatiotemporal events, including cell migration, orientation, proliferation, and differentiation. With the continuous advancement of in vitro construction techniques, many studies have contributed to skeletal muscle tissue engineering (STME). This review summarizes recent advances in the ordered construction of skeletal muscle tissues, and evaluates the impact of engineering strategies on cell behavior and maturation, including biomaterials, manufacturing methods and training means.
View Article and Find Full Text PDFCells
March 2025
Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Non-coding genes, such as microRNA and lncRNA, which have been widely studied, play an important role in the regulatory network of skeletal muscle development. However, the functions and mechanisms of most non-coding RNAs in skeletal muscle regulatory networks are unclear. This study investigated the function and mechanism of in muscle growth and development.
View Article and Find Full Text PDFAquac Nutr
February 2025
College of Life Science, Henan Normal University, Xinxiang 453007, China.
Starvation is an environmental stress that cannot be ignored during the growth of aquatic animals. Amino acid composition and balance can influence the nutritional effects, regulating the anabolic metabolism and energy signaling in the organism. Among these, branched-chain amino acids (BCAAs), which are essential amino acids in fish, play vital roles in energy regulation and growth metabolism.
View Article and Find Full Text PDFAnim Biosci
February 2025
College of Animal Science, Jilin University, China, Changchun, China.
Objective: This study aimed to investigate the function of miRNA 21-5p in regulating the differentiation of C2C12 myoblasts and intramuscular lipid droplet accumulation in myotubes.
Methods: The role of miR-21-5p in the proliferation and differentiation of myofibroblasts and intracellular lipid accumulation was analyzed using bioinformatics, CCK-8 assay, RT-qPCR, immunoblotting, immunofluorescence staining, and Oil Red O staining.
Results: Analysis of porcine BodyMap transcriptomic data revealed differential expression of miRNA 21-5p in skeletal muscle and adipose tissue.
Mediators Inflamm
March 2025
Department of Foot and Ankle Orthopedics, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan, China.
Taohong Siwu decoction (THSWT) has shown therapeutic effects on ischemia/reperfusion injury (IRI). This study tended to investigate the role of THSWT combined with the long non-coding RNA (LncRNA) H19 (H19)/miR-675-5p axis in improving limb IRI (LIRI). Hind LIRI rats and simulated IRI skeletal myoblasts models were constructed to evaluate the therapeutic effects of THSWT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!