Water resource recovery facilities (WRRFs) increasingly must maximize nitrogen and phosphorus removal, but concurrently face challenges to reduce their energy usage and environmental footprint. In particular, biological nutrient removal (BNR), which targets removal of phosphorus and nitrogen, exhibits a large energy demand. However, a BNR process achieving partial oxidation of NH to NO (nitritation) could reduce energy demands, with secondary environmental emission benefits. Research was conducted on bench-scale systems performing nitritation and nitrification to better understand how mixed microbial consortia, cultured on real wastewater, can sustain nitritation. BNR configurations achieved nitrite accumulation ratios of 64-82%, with excellent overall effluent quality. Applying phylogenetic, transcriptomic, and metabolomic methods, coupled with process monitoring, results indicate that partial nitritation may be induced through a combination of: (1) Employing ammonia-based aeration control, with an ammonia setpoint of 2, 3 mgN/L; (2) Maintaining an aerobic period DO of 1.0-2.0 mg/L; and (3) Operating BNR post-anoxically, integrated within enhanced biological phosphorus removal (EBPR). Significant nitritation was achieved despite the presence Nitrobacter spp., but nitrite oxidoreductase must be functionally impaired or structurally incomplete. Overall, this research demonstrated the value of interrogating a mixed microbial consortia at a macro and molecular level to explore unique metabolic responses such as nitritation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2022.119074 | DOI Listing |
Basic Clin Pharmacol Toxicol
February 2025
Department of Biomedicine, Aarhus University, Aarhus, Denmark.
The media-lumen diameter ratio of small arteries is increased in hypertension, diabetes and obesity. It is likely that both shear stress on the endothelial cells, transmural pressure and smooth muscle cell tone are important for the altered vascular structure. However, the precise interaction and importance of these factors are incompletely understood.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.
View Article and Find Full Text PDFBMC Biol
January 2025
The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
Background: The emergence of new molecular targeted drugs marks a breakthrough in asthma treatment, particularly for severe cases. Yet, options for moderate-to-severe asthma treatment remain limited, highlighting the urgent need for novel therapeutic drug targets. In this study, we aimed to identify new treatment targets for asthma using the Mendelian randomization method and large-scale genome-wide association data (GWAS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!