Densely spaced four-dimensional scanning transmission electron microscopy (4D STEM) analyzed using correlation symmetry coefficients enables large area mapping of approximate rotational symmetries in amorphous materials. Here, we report the effects of Poisson noise, limited electron counts, probe coherence, reciprocal space sampling, and the probe-sample interaction volume on 4D STEM symmetry mapping experiments. These results lead to an experiment parameter envelope for high quality, high confidence 4D STEM symmetry mapping. We also establish a direct link between the symmetry coefficients and approximate rotational symmetries of nearest-neighbor atomic clusters using electron diffraction simulations from atomic models of a metallic glass. Experiments on a PdCuSi metallic glass thin film demonstrate the ability to image the types, sizes, volume fractions, and spatial correlations amongst local rotationally symmetry regions in the glass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2022.113612 | DOI Listing |
Med Image Anal
January 2025
Department of Applied Mathematics, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
The orientation of a blood vessel as visualized in 3D medical images is an important descriptor of its geometry that can be used for centerline extraction and subsequent segmentation, labeling, and visualization. Blood vessels appear at multiple scales and levels of tortuosity, and determining the exact orientation of a vessel is a challenging problem. Recent works have used 3D convolutional neural networks (CNNs) for this purpose, but CNNs are sensitive to variations in vessel size and orientation.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea.
Precise description of the interaction between molecular oxygen and metal surfaces is one of the most challenging topics in quantum chemistry. In this work, we use low-temperature scanning tunneling microscopy (STM) to identify and characterize an adsorption state of molecular oxygen that coordinates to three Ag atoms (μ) on Ag(100). Surprisingly, μ-O cannot be identified as a stable configuration with generalized gradient approximation (GGA)-level density functional theory (DFT) calculations.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Syngenta, Jealott's Hill International Research Centre, Bracknell, UK.
Background: Herbicide cross-resistance is of increasing concern because it compromises the effectiveness of both existing and new chemical options. However, a common misconception is that if a weed population shows dose-response shifts to two herbicides, it is cross-resistant to both. The possibility that individual plants may possess different resistance mechanisms is often overlooked.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS - Université Toulouse III-Paul Sabatier, 118 Route de Narbonne, F-31062 Toulouse, France.
In this work, we reexamine the Dailey-Townes model by systematically investigating the electric field gradient (EFG) in various chlorine compounds, dihalogens, and the uranyl ion (). Through the use of relativistic molecular calculations and projection analysis, we decompose the EFG expectation value in terms of atomic reference orbitals. We show how the Dailey-Townes model can be seen as an approximation to our projection analysis.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
This paper presents a grid-based approach to model molecular association processes as an alternative to sampling-based Markov models. Our method discretizes the six-dimensional space of relative translation and orientation into grid cells. By discretizing the Fokker-Planck operator governing the system dynamics via the square-root approximation, we derive analytical expressions for the transition rate constants between grid cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!