Prenatal diagnosis and molecular cytogenetic characterization of an inherited microdeletion of 18q12.3 encompassing SETBP1.

J Int Med Res

Department of Obstetrics and Gynecology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, PR China.

Published: September 2022

The 18q12.3 region contains the SET binding protein 1 (SETBP1) gene. SETBP1 mutations or deletions are associated with Schinzel-Giedion syndrome or intellectual developmental disorder, autosomal dominant 29. We report the prenatal diagnosis and genetic counseling of a patient with a maternally inherited 18q12.3 microdeletion. In this family, the mother and son carried the same microdeletion. Chromosomal microdeletions and microduplications are difficult to detect using conventional cytogenetics, whereas the combination of prenatal ultrasound, karyotype analysis, chromosomal microarray analysis, and genetic counseling is helpful for the prenatal diagnosis of chromosomal microdeletions/microduplications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9478714PMC
http://dx.doi.org/10.1177/03000605221121955DOI Listing

Publication Analysis

Top Keywords

prenatal diagnosis
12
genetic counseling
8
prenatal
4
diagnosis molecular
4
molecular cytogenetic
4
cytogenetic characterization
4
characterization inherited
4
inherited microdeletion
4
microdeletion 18q123
4
18q123 encompassing
4

Similar Publications

Purpose: Acute fatty liver of pregnancy (AFLP) is a severe complication that can occur in the third trimester or immediately postpartum, characterized by rapid hepatic failure. This study aims to explore the changes in portal vein blood flow velocity and liver function during pregnancy, which may assist in the early diagnosis and management of AFLP.

Methods: This longitudinal study was conducted at a tertiary healthcare center with participants recruited from routine antenatal check-ups.

View Article and Find Full Text PDF

Background: Fetal midgut volvulus is a rare disease, with a high risk of potentially life-threatening fetal complications.

Purpose: The aim of this study was to retrospectively analyze the imaging findings of fetal midgut volvulus diagnosed by magnetic resonance imaging (MRI) and explore its value in non-invasive prenatal diagnosis.

Methods: A retrospective collection of data from 156 fetuses suspected of intestinal obstruction by ultrasound examination in our hospital was conducted.

View Article and Find Full Text PDF

Objective: Advancements in non-invasive prenatal screening (NIPS) could significantly alter prenatal screening by expanding the range of genetic conditions screened. This study aims to explore the perspectives of healthcare professionals (HCP) on the expanded use of NIPS and explore specifications for the inclusion of genetic conditions.

Method: Semi-structured interviews were conducted with Canadian HCPs who counsel pregnant individuals about NIPS.

View Article and Find Full Text PDF

Objective: Fetal intracranial hemorrhage (FICH) is a rare and potentially deleterious condition. Fetal alloimmune thrombocytopenia and pathogenic variations in COL4A1/A2 genes are well-recognized causes of FICH. However, pathogenic COL4A1/A2 variations are identified in only 20% of fetuses referred for FICH after excluding other known causes, leaving the majority unexplained and making genetic counseling difficult.

View Article and Find Full Text PDF

SUMOylation involves covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on target proteins and regulates various aspects of their function. Sentrin-specific proteases (SENPs) are key players in both the conjugation reaction of SUMO proteins to their targets and the subsequent deconjugation of SUMO-conjugated substrates. Here, we provide the first comprehensive prenatal description of a lethal syndrome linked to a novel homozygous stop-gain variant in SENP7 c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!