Solution-processed hole contact materials, as an indispensable component in perovskite solar cells (PSCs), have been widely studied with consistent progress achieved. One bottleneck for the commercialization of PSCs is the lack of hole contact materials with high performance, cost-effective preparation, and green-solvent processability. Therefore, the development of versatile hole contact materials is of great significance. Herein, we report two novel donor-acceptor (D-A)-type hole contact molecules (FMPA-BT-CA and 2FMPA-BT-CA) with low cost and alcohol-based processability by utilizing a fluorination strategy. We showed that the fluorine atoms lead to the lowered highest occupied molecular orbital (HOMO) energy levels and larger dipole moments for FMPA-BT-CA and 2FMPA-BT-CA. Moreover, fluorination also improves the buried interfacial interaction between hole contacts and perovskite. As a result, a remarkable power conversion efficiency (PCE) of 22.37% along with good light stability could be achieved for green-solvent-processed FMPA-BT-CA-based inverted PSC devices, demonstrating the great potential of environmentally compatible hole contacts for highly efficient PSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c10758 | DOI Listing |
Materials (Basel)
January 2025
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Perovskite solar cells (PSCs) are regarded as extremely efficient and have significant potential for upcoming photovoltaic technologies due to their excellent optoelectronic properties. However, a few obstacles, which include the instability and high costs of production of lead-based PSCs, hinder their commercialization. In this study, the performance of a solar cell with a configuration of FTO/CdS/BaZrS/HTL/Ir was optimized by varying the thickness of the perovskite layer, the hole transport layer, the temperature, the electron transport layer (ETL)'s defect density, the absorber defect density, the energy band, and the work function for back contact.
View Article and Find Full Text PDFBiomed Eng Lett
January 2025
MicroSystems Lab (µSL), School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, 110067 India.
This paper demonstrates real-time, label-free, contact-based glucose sensor design of inset-fed Microstrip Patch Antenna (MSPA) genres: Slotted Microstrip Patch Antenna (SMSPA) and Through-hole Microstrip Patch Antenna (THMSPA). In SMSPA, multiple slots are created along the width edge of the patch. In THMSPA, a through-hole is introduced across the antenna including all the layers: patch, substrate and ground conductor of the MSPA.
View Article and Find Full Text PDFViruses
December 2024
National Bio- and Agro-Defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, KS 66506, USA.
During the past 25 years, vesicular stomatitis virus (VSV) has produced multiple outbreaks in the US, resulting in the emergence of different viral lineages. Currently, very little is known about the pathogenesis of many of these lineages, thus limiting our understanding of the potential biological factors favoring each lineage in these outbreaks. In this study, we aimed to determine the potential phenotypic differences between two VSV Indiana (VSIV) serotype epidemic strains using a pig model.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea.
We examined how controlling variables in a pre-metallization Ar sputter-etching process for in situ contact-hole cleaning affects the contact-hole profile, etching rate, and substrate damage. By adjusting process parameters, we confirmed that increasing plasma power lowered the DC bias but enhanced the etching rate of SiO, while increasing RF power raised both, with RF power having a more pronounced effect. Higher Ar flow rate reduced etching uniformity and slightly lowered the DC bias.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan 432000, China.
In order to promote power conversion efficiency and reduce energy loss, we propose a perovskite solar cell based on cylindrical MAPbI3 microstructure composed of a MAPbI perovskite layer and a hole transport layer (HTL) composed of PEDOT:PSS. According to the charge transport theory, which effectually increases the contact area of the HTL, promoting the electronic transmission capability, the local field enhancement and scattering effects of the surface plasmon polaritons help to couple the incident light to the solar cell, which can increase the absorption of light in the active layer of the solar cell and improve its light absorption efficiency (LAE). based on simulation results, a cylindrical microstructure of the perovskite layer increases the contact area of the hole transport layer, which could improve light absorption, quantum efficiency (QE), short-circuit current density (J), and electric power compared with the perovskite layer of other structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!