Dye-sensitized solar cells are promising candidates for low-cost indoor power generation applications. However, they currently suffer from complex fabrication and stability issues arising from the liquid electrolyte. Consequently, the so-called zombie cell was developed, in which the liquid electrolyte is dried out to yield a solid through a pinhole after cell assembly. We report a method for faster, simpler, and potentially more reliable production of zombie cells through direct and rapid drying of the electrolyte on the working electrode prior to cell assembly, using an iodide-triiodide redox couple electrolyte as a basis. These "rapid-zombie" cells were fabricated with power conversion efficiencies reaching 5.0%, which was larger than the 4.5% achieved for equivalent "slow" zombie cells. On a large-area cell of 15.68 cm, over 2% efficiency was achieved at 0.2 suns. After 12 months of dark storage, the "rapid-zombie" cells were remarkably stable and actually showed a moderate increase in average efficiencies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9523705 | PMC |
http://dx.doi.org/10.1021/acsami.2c14299 | DOI Listing |
Langmuir
January 2025
Surface Science Laboratory, Graduate School of Engineering, Toyota Technological Institute, 2-12-1, Hisakata, Tempaku, Nagoya, Aichi 468-8511, Japan.
Hydrogen-substituted graphdiyne (HsGDY) is a two-dimensional material with an sp-sp carbon skeleton featuring a band gap and a porous structure that enhances ion diffusion. In previous reports, HsGDY growth was limited to metal substrates such as Cu, which then required transfer. Here, we developed a sandwich method that allows HsGDY to be grown directly on the target substrate.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore, Madhya Pradesh, 453552, India.
Background: The demand for sustainable energy solutions has increased interest in natural microalgal dyes as photosensitizers in dye-sensitized solar cells (DSSCs). This study addresses the critical issue of maximizing dye integrity and yield during extraction, particularly the degradation that occurs at temperatures above 60 °C. Our investigation of dye extraction from Asterarcys quadricellulare and Scenedesmus sp.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Lorraine and CNRS, LPCT, UMR 7019, F-54000 Nancy, France.
The efficient functioning of dye-sensitized solar cells (DSSCs) is governed by the interplay of three essential components: the semiconductor, the dye, and the electrolyte. While the impact of the electrolyte composition on the device's performance has been extensively studied in n-type DSSCs, much less is known about p-type-based devices. Here, we investigate the effect of potential-determining ions on the energetics and stability of dye-sensitized NiO surfaces by using electrochemical, ab initio molecular dynamics simulations, and ab initio electronic structure calculations.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Assam University, Silchar-788011, India.
Density functional theory has been employed to study indolo[3,2,1-]carbazole donor-based dyes, incorporating one and two units of 2,4-dimethoxybenzene auxiliary donors. Electrostatic potential analysis highlights the dye with one auxiliary donor (D2) as having the highest charge-donating capability. Structural analysis shows that auxiliary donors enhance planarity, reduce steric hindrance, and improve π-conjugation.
View Article and Find Full Text PDFHeliyon
January 2025
Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Facultad de Ciencias Básicas, Universidad Del Atlántico, Puerto Colombia, 81007, Colombia.
Since Dye-Sensitized Solar Cells (DSSCs) was created, a versatile and cost-effective alternative among photovoltaic technology options for power generation and energy transition to combat climate change have emerged. The theoretical and experimental knowledge of DSSCs have increased in regard to their operation in the last three decades of development; it includes the device's components, as well as the most recent innovations in their application and forms of activation. In this work paper, we presented a meta-study of photovoltaic characterization parameters, 329 scientific reports of DSSCs were considered to compare three types of sensitizers (Organometallics, non-metal organic dyes and, natural dyes).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!